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Abstract

We present an fMRI investigation of object representation in the human ventral vision path-
way highlighting three aspects of similarity analysis that make it especially useful for illumi-
nating the representational content underlying neural activation patterns. First, similarity
structures allow for an abstract depiction of representational content in a given brain region.
This is demonstrated using hierarchical clustering and multidimensional scaling (MDS) of the
dissimilarity matrices defined by our stimulus categories—female and male human faces, dog
faces, monkey faces, chairs, shoes, and houses. For example, in ventral temporal (VT) cortex
the similarity space was neatly divided into face and non-face regions. Within the face region
of the MDS space, male and female human faces were closest to each other, and dog faces were
closer to human faces than monkey faces. Within the non-face region of the abstract space,
the smaller objects—shoes and chairs—were closer to each other than they were to houses.
Second, similarity structures are independent of the data source. Dissimilarities among stimu-
lus categories can be derived from behavioral measures, from stimulus models, or from neural
activity patterns in different brain regions and different subjects. The similarity structures
from these diverse sources all have the same dimensionality. This source independence allowed
for the direct comparison of similarity structures across subjects (N = 16) and across three
brain regions representing early—, mid—, and late—stages of the object vision pathway. Finally,
similarity structures can change shape in well-ordered ways as the source of the dissimilarities
changes—helping to illuminate how representational content is transformed along a neural
pathway. By comparing similarity spaces from three regions along the ventral visual pathway,
we demonstrate how the similarity structure transforms from an organization based on low-
level visual features—as reflected by patterns in early visual cortex—to a more categorical
representation in late object vision cortex with intermediate organization at the middle stage.

Introduction

Multivariate techniques for the analysis of functional magnetic resonance imaging (fMRI) pro-
vide powerful means for better understanding the cognitive functions of the brain. Chief among
these are tools for investigating the representational structure underlying brain activation pat-
terns. Recent advances along these lines include the combination of classifier analyses with
cognitive models of stimulus spaces for the purpose of testing specific theories of neural represen-
tation (Kay, Naselaris, Prenger, & Gallant, 2008; Mitchell, Shinkareva, Carlson, Chang, Malave,
Mason, & Just, 2008), and the use of pattern-based similarity analysis to explore structure in
areas where no explicit model is assumed (Edelman, Grill-Spector, Kushnir, & Malach, 1998;
O’Toole, Jiang, Abdi, & Haxby, 2005; Hanson, Matsuka, & Haxby, 2004; Kriegeskorte, Mur,
Ruff, Kiani, Bodurka, Esteky, Tanaka, & Bandettini, 2008; Kriegeskorte, Mur, & Bandettini,
2008). In this chapter, we make a case for similarity analysis in two parts. First, we provide
some background about where similarity analysis fits within the fMRI analysis toolkit. Then we
report an experiment that demonstrates its usefulness—highlighting three aspects of similarity
analysis that make it a useful tool for analyzing representational structure. The first is repre-
sentational abstractness. Similarity structures—defined as matrices of pair-wise dissimilarities!

I Throughout we will follow the convention of referring to similarity structures or similarity spaces in the generic
sense. However, when referring to the actual numbers used in the analyses we use the term dissimilar-
ity—technically, a number that goes up the more two items differ from each other. The term distance is
used for Euclidean and correlation distances.
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between experimental conditions—provide an abstract description of the representational space
for a set of cognitive states. These descriptions are amenable to visualization techniques such as
clustering or multidimensional scaling, enabling investigators to explore abstract cognitive struc-
ture. The second aspect is source independence (Kriegeskorte, Mur, Bandettini, 2008). Because
the number of stimuli fixes the number of dimensions, similarity structures provide a common
second-order high-dimensional space in which to directly compare results from different sources,
including behavioral judgments and neural activity patterns in different brain regions or differ-
ent subjects—even across species (Kriegeskorte, Mur, Ruff, et al., 2008). The third aspect is
transmutability. This refers to the idea that similarity spaces can change shape in well-ordered
ways as the sources of the measures change. This can be particularly useful in brain research
for investigating how representations are transformed as information is processed in a pathway
of connected cortical areas. This last aspect is demonstrated in an experiment reported below
in which we demonstrate how the similarity space for a set of face and non-face visual objects
transforms form early to late stages of the ventral object vision pathway.

Where does similarity analysis fit within the fMRI analysis toolkit?

The set of tools available for fMRI analysis is under constant development. The standard toolkit
consists primarily of a set of techniques for univariate statistical analysis on a voxel-by-voxel
basis with the general linear model (GLM) as the core component. There are several readily
available software packages that implement these methods (e.g., AFNI, Cox, 1996; FSL, Smith,
Jenkinson, Woolrich, Beckman, Behrens, et al., 2004; and SPM, Friston, 2006). Although, the
majority of new fMRI studies still rely mainly on standard univariate methods, a complementary
set of multivariate methods can reveal information in fMRI data that univariate methods are
insensitive to (for recent reviews see Norman, Polyn, Detre, & Haxby, 2006; Haynes & Reese,
2006; O’Toole, Jiang, Abdi, Perbard, Dunlop, & Parent, 2007;). Software packages to aid in the
implementation of this new set of techniques are being developed—including PyMVPA (Hanke,
Halchenko, Sederberg, Hanson, Haxby, & Pollmann, 2009) and the Princeton MVPA Toolbox for
MATLAB™ (Detre, Polyn, Moore, Natu, Singer, Cohen, Haxby, & Norman, 2006). The new
multivariate toolkit incorporates analysis techniques developed by the machine learning commu-
nity, including a large variety of state-of-the-art pattern classifiers. In addition to classification
techniques, which have been at the heart of the trend toward multivariate fMRI analysis, tech-
niques for exploring representational structure have begun to appear in the literature as well. Of
these, two general approaches can be identified: (1) classification with cognitive models, and (2)
similarity analysis. We now present a brief overview of the development of this new toolkit for
fMRI beginning with a justification for the adoption of multivariate techniques as a necessary
complement to standard analysis techniques.

The standard approach

The standard approach to fMRI analysis involves modeling a time-course of experimental con-
ditions and using the general linear model (GLM) to approximate the magnitude of response
for each experimental condition at each voxel (Friston, Jezzard, & Turner, 1994), evaluating the
significance of activations using univariate statistics. Typically, data are smoothed or blurred
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using a spatial filter, which has the dual effect of increasing the signal-to-noise ratio and lessening
the problem of multiple comparisons by reducing the resolution of an image, thereby increas-
ing the size of the unit of analysis from the voxel to the “blob”—composed of non-independent,
neighboring voxels. To compare results across subjects, individual brain maps are standardized
to a common voxel grid by aligning anatomical landmarks and warping the data to fit a common
template. To the extent that active blobs in each subject overlap in the standard space, positive
effects are reported as significant outcomes in a random-effects analysis (e.g., t-test, ANOVA).

This standard approach has two considerable drawbacks. The first is due to spatial smoothing,
which results in the loss of informative variation in signal strength occurring at spatial frequencies
higher than those corresponding to the smoothness of the processed data. The second—more
serious—drawback of the standard approach is that it limits the range of experimental questions to
those that can be answered by measuring the magnitude of BOLD response for brain regions with
volumes greater than one milliliter. As a result, fMRI studies have largely been concerned with
mapping particular cognitive functions onto particular brain regions. Many important discoveries
have been made about the function of certain regions using this technique—the fusiform face
area (FFA, Sergent, Ohta, & MacDonald, 1992; Kanwisher, McDermott, & Chun, 1997) and the
parahippocampal place area (PPA, Epstein & Kanwisher, 1998) being two famous examples in
the ventral temporal cortex (VT). However, results can be misleading. In the case of the FFA,
the highly replicable finding that activity in this region is greatest during perception of faces, led
to the strong claim that the region was exclusively involved in face processing and thus a face-
processing “module” in the brain (Kanwisher et al., 1997; Kanwisher & Yovel, 2006). A different
view emerges, however, when analyzing how patterns of activity—instead of overall magnitude—
inside and outside of areas of peak activity can inform the nature of face representation in this
area. Haxby et al. (Haxby, Gobbini, Furey, Schouten & Pietrini, 2001) demonstrated how multi-
voxel pattern analysis (MVPA) could be used to show that activity associated with viewing faces
is not limited to areas of peak activity identified as the FFA. When peak regions were left out of
the analysis, patterns consisting of voxels in the surrounding cortex were sufficient to classify face
and non-face activity. Thus Haxby et al. provided evidence of a distributed overlapping system
for faces and objects in ventral temporal cortex—a stark contrast to the modular view offered by
Kanwisher and colleagues. The public debate that followed highlighted differences in ideological
stances about brain organization—modular vs. distributed, and it demonstrated the importance
of multivariate pattern analysis as an alternative approach.

A take-away point from that debate is that the tools used for fMRI analysis can have a signifi-
cant impact on the conclusions that can be drawn about the nature of neural representation. The
standard approach to fMRI analysis is limited because it emphasizes mapping particular struc-
tures to particular functions. If the cognitive brain were organized as a collection of functional
modules—each of an appropriate size to match fMRI resolution, then standard analysis methods
should be sufficient to find them.? The task remaining would be to close the set of experiments
that will map each region to its function. Such a scenario, however, is neither plausible nor is
it an outcome expected even by the most committed modularists. Even the strongest versions
of cognitive modularity envision a role for modules only in the input and output pathways of
the sensory and motor systems; the so-called central cognitive systems responsible for abstract

2However, we may still need pattern analysis to read out how information is encoded by neural populations within
each module.
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thought, planning, memory, etc., are said to be non-modular integrating information across sen-
sorimotor modalities (Fodor, 1983). Nevertheless, it is likely that there will be more discoveries
of specialized regions like the FFA and PPA—there is a growing list (e.g., the extra-striate body
area, EBA, Downing, Jiang, Shuman & Kanwisher, 2001). It is also likely that these regions—as
appears to be true of the FFA—will not be strictly modular. While a region may be maximally ac-
tivated by a narrow range of stimuli, this does not prevent it being at the same time differentially
tuned to a wider range of stimuli, or embedded in a larger distributed system of representation
where sub-maximal activity can be as informative as the peak activity. The standard analytic
approach is well suited for locating regions that are involved in certain processing tasks, though
it is unsuited for exploring the non-modular, distributed aspects of neural representation such as
the representational content of neural population codes (Mur, Bandetini, Kriegeskorte, 2009).

The multivariate approach

Multi-voxel pattern analysis improves upon the standard approach both in terms of better preser-
vation of fMRI signal and in its ability to measure brain activity related to distributed neural
representation. MVP analyses typically involve no or minimal smoothing, and the distortion and
averaging associated with spatial normalization is avoided because analyses are typically carried
out in individual subjects’ native brain spaces. More important than the preservation of high
spatial frequency image details, though, is the suitability of MVP analysis for investigating dis-
tributed activity. There is strong evidence that information in the cortex is represented as neural
population codes. Thus a particular cognitive state is not necessarily represented by the on-off
state of a single neuron or cluster of neurons, but instead states are characterized as patterns of
graded activity over large ensembles of neurons. This principle has been demonstrated numerous
times with the use of recording electrodes implanted in the brains of non-human mammals (e.g,
Georgopoulos, Schwartz, & Kettner, 1986). Although fMRI does not provide the direct mea-
surement of neural activity that extracellular recording techniques do, it can be used in a way
analogous to ensemble electrode recording to investigate neural population codes. Kamitani &
Tong (2005) demonstrated this in a study investigating line-orientation representation in human
visual cortex. Using pattern classifiers, they were able to differentiate patterns of BOLD activity
in visual cortex evoked by viewing square-wave gratings of different orientations. Although it was
long known that the mammalian visual cortex contains columns of orientation preference (Hubel
& Wiesel, 1968), it was not thought that such fine-grained organization could be detected using
fMRI because of its low resolution—all orientations are represented within the cortical space
measured in a single voxel. Classification of voxel patterns was nevertheless possible because just
as each orientation column has an orientation preference or tuning curve, each voxel also has an
idiosyncratic “tuning curve” reflecting the sum of activity for all of the columns it comprises.
Thus as a result of non-uniformity in the distribution of orientation biases across voxels, voxel
activity patterns may be used to read out columnar activity with the help of multivariate pattern
classifiers (for further discussion and debate of this account see: Haynes & Reese, 2005, Kamitani
& Sawahata, 2010, Kriegeskorte, Cusack , & Bandettini, 2010, and Op de Beeck, 2010).

The classification of line-orientation response patterns by Kamitani and Tong provides an
example of how MVPA can be used to uncover the representation of a single stimulus dimension.
This technique can be thought of as testing a single parameter model of neural representation
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where the stimuli used are relatively isomorphic to the dimension being tested. Investigation
need not be limited to single parameter models and simple stimuli, however. Researchers have
also begun to test more complex cognitive models using multivariate classification techniques.
These approaches involve the application of a multidimensional model to represent a complex
natural stimulus, and in turn associating brain activity patterns with coordinates in the model
space. For example, Kay et al. (2008) modeled natural visual scenes using a set of spatial filters
simulating the hypothesized representation in V1. They used a large set of natural scene images
to build regression equations that predict the activity in each V1 voxel based on the V1 model
representation for each natural image. They then used this encoding model to predict fMRI
patterns for novel images that were not in the training set, and showed that the measured fMRI
patterns for these stimuli matched the predicted patterns with a high degree of accuracy. Using
a similar approach in a different domain, Mitchell and colleagues (Mitchell, et al., 2008) classified
brain patterns evoked by reading nouns using a model of semantic representation similar to latent
semantic analysis (Landauer & Dumais, 1997) to model word meaning.

But what if there is no explicit model to be tested for a given brain region? For example, we
have good evidence about the general activity profile of ventral temporal cortex (VT), but it is
less clear what types of specific information or cognitive model is represented by the underlying
neural population codes. There are well-known areas of peak activity for faces, places, and
living-things vs. non-living things, etc., but what is the structure of representation beyond these
relatively coarse dissociations? Classification analysis can be informative here as well, although
to a limited degree unless we consider further the similarity structure. In classification analysis
we can impose a set of category labels, such as faces, shoes, or hairbrushes, and use classifiers
to answer the simple question: does the information discriminate among labeled categories?
MVPA has an advantage over the standard approach for answering this question because the
answer does not depend on finding significant differences in peak activity. Rather, by pooling
over many voxels, slight but reliable differences can be aggregated boosting the ability to reliably
discriminate among conditions. However, while classification analyses confer greater power to
the task of finding brain activity patterns that distinguish among experimental conditions, the
technique doesn’t elucidate the underlying structure of representations.

Although, classification analysis provides no immediate insight into the structure of repre-
sentation, the basis of pattern classification—i.e., distances between high-dimensional pattern
vectors—can be used to represent the similarity space for a set of stimuli. Analysis of simi-
larity spaces can in turn be used to uncover an inherent representational structure. Similarity
structure analysis has a long history in cognitive psychology (e.g., Rips, Shoben, & Smith, 1973;
Solis & Arabie, 1979, Connolly, Gleitman, & Thompson-Schill, 2007) as well as in diverse other
disciplines including genetics (Eisen, Spellman, Brown, & Bostein, 1998), ecology (Clarke, 1993),
and political science (Jakulin, Buntine, La Pira, & Brasher, 2009). As a result of the broad
applicability of similarity analysis, numerous methods have been developed for clustering, visu-
alization, and decomposing similarity structures that can be incorporated into the fMRI toolkit
with appropriate modifications. Several studies have demonstrated the utility of similarity-based
MVP analysis. For example, O’'Toole et al. (2005) used multidimensional scaling to represent
the similarity structure of eight categories from the Haxby (2001) dataset. Hanson et al. (2004)
calculated the similarities for the same dataset as correlations between values in a hidden layer
of a neural network classifier. They used hierarchical clustering to provide a visualization of
the similarity relations between conditions. More recently, Kriegeskorte et al. (2008) demon-
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strated that representing brain activity for multiple conditions as similarity structures not only
provides a way to assess the internal organization of representations—exploiting the representa-
tional abstractness of similarity spaces, it also provides a second-order representation that can
be used to directly compare results across domains—exploiting the source independence of sim-
ilarity structures. They collected fMRI data from human subjects and extracellular recording
data from monkeys, while both monkeys and humans viewed a common set of visual stimuli.
Multivariate patterns—voxel patterns in VT cortex in humans and electrode ensemble patterns
from inferior temporal (IT) cortex in monkeys—were used to calculate similarity structures for a
large set of stimuli. The resulting similarity structures—notable for a strong segregation of liv-
ing and non-living objects, as well as interesting structure segregating animal faces from animal
bodies—correlated between species. Representations in humans and monkeys exhibited the same
category structure and correlated similarity structure even within categories. This suggests that
the representations of animate objects in human VT and monkey IT cortex have a structure that
is preserved over evolution.

Experiment

As mentioned, VT is known to be specialized for the representation of visual objects while less
is known about the neural code underlying these representations. The stimulus set for this
experiment was designed to investigate face and object representation primarily in VT. The
stimuli include several types of faces and non-face objects. We investigate the classification
accuracy of these representations in three stages of the object vision pathway representing early-,
mid-, and late- stages of processing. We refer throughout to these regions as early visual (EV)
cortex, lateral occipital (LO) cortex, and ventral temporal (VT) cortex—see below for details on
their delineation. We then show how the similarity structure transforms from EV through LO to
VT, illuminating the functional relationships among these regions. We assess also the stability
and reliability of similarity structures both within and between subjects.

Subjects and stimuli. Sixteen healthy subjects (8 men) viewed static grayscale pictures of four
categories of faces—human female, human male, monkeys, and dogs—and three categories of
objects—houses, chairs, and shoes—while undergoing fMRI scanning. One block of each stimulus
category was presented in each of eight runs (1536 images, one every 2 s). Images were presented
for 500 ms with 2000 ms inter-stimulus intervals. Sixteen images from one category were shown
in each block and subjects performed a one-back repetition detection task. Repetitions were
different pictures of the same face or object. Blocks were separated by 12 s blank intervals. One
block of each stimulus category was presented in each of eight runs.

fMRI image acquisition. Blood oxygen level dependent (BOLD) MRI images were obtained
with gradient echo echoplanar imaging using a Siemens Allegra head-only 3T scanner (Siemens,
Erlangen, Germany). Functional images were composed of 32 3mm thick axial images (TR =
2000 ms, TE = 30 ms, Flip angle = 90 x 64 x 64 matrix, FOV = 192 mm x 192 mm) that
included all of the occipital and temporal lobes and all but the most dorsal parts of the frontal
and parietal lobes. 192 volumes were obtained in each of eight runs.

Structural MRI image acquisition. High-resolution T1-weighted images of the entire brain were
obtained in each imaging session (MPRAGE, TR = 2500 ms, TE = 4.3 ms, flip angle = 8 x 256
x 256 matrix, FOV = 256 mm x 256 mm, 172 1 mm thick sagittal images).
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Figure 1: Binary classification accuracy for three brain regions: early visual (EV), lateral occipital (LO),
and ventral temporal (VT); gray bars = living-living pairs, white bars = living—non-living pairs,
black bars = non-living—non-living pairs. All accuracies are significantly above chance—except
for female vs. male human face in all rois—at at least the p < 0.05 level via t-test with subjects
as the random variable.

Regions of interest. Masks for three regions of interest (ROIs) were hand-drawn for each
subject based on structural landmarks in the high-resolution anatomical images. These regions
are: (1) early visual cortex (EV), including all of bilateral calcarine sulci, (2) mid-level ob-
ject vision region—bilateral lateral inferior occipital cortex (LO), and (3) the late object-vision
region—bilateral ventral temporal cortex (VT), including the inferior temporal, fusiform, and lin-
gual /parahippocampal gyri. The anterior boundary of LO was set at y = —70 mm in Talairach
coordinates. The posterior and anterior boundaries of VT were set at y = —70 and y = —30 mm,
respectively. The drawing of masks and all analyses were carried out in subject native space.
Although we did not collect data to identify functionally defined regions, we make the following
assumptions: (1) EV contains all of V1 and possibly portions of V2; (2) LO contains the object
sensitive lateral occipital complex (LOC), EBA, and MT; (3) VT contains the FFA and PPA.

Preprocessing. Preprocessing of the fMRI data included slice-timing correction, volume regis-
tration to correct for minor head movements, correction of extreme values (despiking), and mean
correction for each run. Eighteen temporally consecutive brain images covering the time period
of each stimulus block—taking into account the hemodynamic lag—were averaged on a voxel-
by-voxel basis to produce a pattern for each block. These block-mean patterns—one pattern per
condition per run—provide the basis for the analyses reported below.

Classification analysis. We tested the discriminability of patterns within our three ROIs using a
simple binary nearest-neighbor classification technique with leave-one-out N-fold cross-validation.
Template patterns were created for each stimulus class by averaging patterns over seven of the
eight experimental runs. Feature selection for each cross-validation fold included application of a
threshold mask based on overall visual responsiveness of voxels using an omnibus general linear
test (F-statistic, p < 107%) for all conditions modeled separately vs. baseline based on a GLM
analysis using the seven training runs. Patterns from the left-out run were then classified based on
Pearson correlation (nearest-neighbor) with each template on a strictly pair-wise basis such that
chance performance was 0.5. This was repeated for each of eight data folds averaging results across
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folds. Classifier performance for each stimulus pair is presented in Figure 1. Vertical bars indicate
the mean performance averaged across subjects. All accuracies—except for female versus male
human faces—were significantly above chance performance at p < 0.05 level, using one-sample t-
test with subjects as the random variable and 0.5 as the mean for the null-hypothesis; one-tailed;
uncorrected for multiple comparisons. These results demonstrate good discriminability between
our conditions throughout the three regions we tested with the notable exception of the inability
to discriminate between male and female faces in any region.

We measured dissimilarity between conditions using a variation on correlation distance, which
conventionally defines dissimilarity between vectors j and k as:

(1) Gjr =1 = rjn

where 7 is the Pearson correlation between two patterns. In the analyses that follow, we use
a version of this that takes into account the internal reliability of conditions. The formula in
(1) assumes that maximum observable correlation between conditions is 1.0. However, given
the noisy nature of fMRI data, it is unlikely under optimum circumstances that even the same
stimulus will yield perfectly correlated patterns across different observations. Therefore, instead
of using 1 as an upper bound, we subtract the average between-condition correlation from the
average within-condition correlation calculated using different folds of the data. Specifically we
use the formula:

(2) 0k = \/(r3; + 773 /2 = (rjis + 7hj) /2

where 7, is the average Pearson correlation across data folds between template patterns (based on
7 runs) and hold-out patterns (1 run) for conditions j and k, respectively. Pair-wise dissimilarity
patterns are plotted in Figure 2 (top). These dissimilarity matrices are similar to the pair-wise
classification results. The correlations between dissimilarity matrices and classification results
show high agreement within brain regions (r = 0.92, r = 0.89, and 0.80 for VT, LO, and EV,
respectively).

The depiction of the similarity structure in the top of Figure 2 makes evident an increasingly
categorical organization from EV to LO to VT: The dissimilarities for face versus non-face pairs
increase (white bars) whereas dissimilarities for face versus face pairs (gray bars) and non-face
versus non-face pairs (black bars) decrease. To better appreciate how similarity structure is
transformed from one area into the other, it is useful to visualize the data using hierarchical
clustering (Figure 2 middle) and multidimensional scaling (MDS, Figure 2 bottom). The tree
structures were created using single-linkage nearest-neighbor hierarchical clustering and the MDS
plots were created using metric 2-dimensional MDS (Torgerson, 1958). The face versus non-face
distinction is captured in the structure of the tree diagram for VT as two main branches and in
the x-axis for the MDS solutions for LO and VT. There is less evidence for the face—non-face
distinction in EV, where human faces are more similar to shoes than to animal faces. Thus
moving from region to region, the face-non-face (alternatively, animate-inanimate) distinction is
non-existent in EV, begins to become evident in LO, and is the dominant feature of similarity
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Figure 2: Three depictions of similarity structure for 3 brain regions: ventral temporal (VT), lateral
occipital (LO), and early visual (EV) cortex. Top: Pair-wise dissimilarities calculated using
the formula in equation (2) and averaged across subjects; gray bars = living-living pairs, white
bars = living—non-living pairs, black bars = non-living—non-living pairs. Middle: Hierarchical
clustering of pair-wise dissimilarities. Bottom: 2-Dimensional solutions for pair-wise distances
using metric MDS. Note: To better visualize continuity between regions, the axes in the MDS
solution for EV have been rotated from the original output. Results are based on category-
average response patterns (averaged across exemplars within each category). Each category is
represented by one exemplar in the figure.
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structure in VT, consistent with Kriegeskorte et al. (2008). Another interesting dimension is
reflected in the y-axes of the MDS solutions bounded at the extremes by houses and chairs.
(Note that this dimension is the dimension of maximum variance for the solution in EV. As such,
convention is to present it along the x-axis. To make visual comparisons with VT and LO easier,
we rotated the solution in EV from its original configuration—mnot shown—switching the x- and
y-axes and reflecting values about the zero point on the y-axis.) The persistence of this dimension
reflects the functional continuity between EV and the other regions. It is likely that organization
of representations along this dimension reflects similarities in low-level visual attributes, however,
the specific nature of those attributes is an open question.

Comparing similarity across brain regions

To explore how similarity space transforms from one brain region to the next, we directly com-
pared similarity structures across regions in two ways. First, for each subject we calculated the
correlation between similarity structures from each brain region (Figure 3). Similarity structures
from VT correlate more with similarity structures from LO than with EV (¢(15) = 7.10, p < .001),
and correlations between EV and LO are higher than those between EV and VT (¢(15) = 2.98,
p < .01). This pattern supports the idea that differences in similarity structures reflect succes-
sive transformations of representations from early to later stages of the visual processing stream.
Second, to gain further insight into the nature of the transformations between regions we used
individual differences (three-way) multidimensional scaling (INDSCAL, Carroll and Chang, 1970;
Takane, Young, de Leeuw, 1977). Input to the INDSCAL analysis consisted of all 45 dissimi-
larity matrices—one each from three brain regions for 15 subjects—omitting one subject (S12)
whose results were unreliable, see Figure 6. The INDSCAL analysis produces two solution spaces
(Figure 4) based on these dissimilarity matrices. The group space (Figure 4 left) represents the
best fit for estimated distances between stimuli for all 45 dissimilarity matrices. The individual
space (Figure 4 right) represents the weights needed to derive individual distance spaces from the
group space. Thus, the estimated distance between two stimuli along a given dimension for an
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Figure 4: Individual differences multidimensional scaling (INDSCAL, Carroll & Chang, 1977) solution for
45 dissimilarity matrices: three matrices—EV, LO, and VT—from each of 15 subjects (omitting
subject 12, see Figure 6). Left: The compromise two-dimensional MDS solution representing the
best fit across all 45 matrices. Right: Weights for each of the contributing similarity matrices
coded by subject identity (e.g., ‘S16’ stands for subject number 16) and brain region: red =
VT, green = LO, and blue = EV. Weights indicate the degree to which variation along each
dimension explains variance in each contributing distance matrix. Variance in distance matrices
from VT is mostly explained by the face versus non-face distinction captured by dimension 1,
whereas variance in distance matrices from EV is explained mostly by dimension 2. Weights
for matrices from LO fall between those for EV and VT on both dimensions.

individual is proportional to the distance between those stimuli on that dimension in the group
space and the weight for that dimension for that individual. Figure 4 (right) shows how similarity
structures from VT load most heavily on the face versus non-face dimension—dimension 1—and
not much on dimension 2. Structures from EV load most heavily on dimension 2—presumably
reflecting low-level visual similarity—and not much on dimension 1. Finally, structures from LO
fall in between EV and VT on both dimensions.

Stability of similarity structures

Another important factor in assessing the validity of the similarity structures is their stability.
To test within-subject stability we calculated the correlation between similarity structures for
split-halves of each subject’s data correlating structures for odd and even runs for each ROI. This
was done for a range of mask sizes from 50 to 1000 voxels, where possible, to assess stability as
a function of pattern size. Voxels were added to the analysis in order of highest to lowest visual
responsiveness based on an F-statistic from an omnibus general linear test for all conditions
vs. rest based on data from all runs. Subjects were dropped from the analysis as the number
of voxels exceeded their mask size. The results of the split-half analysis are displayed on the
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Figure 5: Stability for similarity structures as a function of the number of voxels in three brain regions:
VT, solid lines; LO, dotted lines; and EV, dashed lines. Left: Within-subject stability calcu-
lated as the correlation between similarity structures from odd and even runs for each subject.
Curves represent the mean of these correlations across subjects. Right: Between-subject stabil-
ity calculated as the correlation between similarity structures from different subjects (based on
all 8 runs). Curves represent the average correlation across all pairs of subjects. Both left and
right: Curves represent means calculated using 15 out of the 16 subjects because one subject
(S12) did not have replicable similarity structures—see Figure 6.

left side of Figure 5. One subject’s split-half correlations were well below the average for the
group, especially in VT. Figure 6 shows the relative positions of all subjects with respect to split-
half correlation—averaged across all voxel-size masks—for VT and LO. Because the similarity
structures were not replicable in this subject, the curves in Figure 5 were calculated as averages
using the 15 remaining subjects. VT produced the highest split-half correlation for similarity
structures, followed by LO, followed by EV. This pattern is repeated when comparing similarity
structures between subjects. The right side of Figure 5 shows the average correlation between
similarity structures across all pairs of subjects (N = 15) as a function of brain region and
number of voxels. Here, the similarity structure for each subject was calculated using the average
patterns across all 8 runs. Note that the between-subject stability of the similarity structure
is slightly higher than the within-subject stability—this is not surprising because the between-
subject estimate was based on all of the data, whereas the within-subject estimate was based on
split-halves. This effect disappears when the between-subject stability is estimated using half the
data, resulting in roughly equivalent values for between versus within (data not shown).
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Discussion

The primary feature of the similarity spaces in LO and VT is the distinction between faces and
objects. This finding is in line with other studies that have found strong distinctions along the
lines of animate versus inanimate boundaries (e.g. Hanson, Matsuka, & Haxby, 2004, O’Toole,
Jiang, Abdi, & Haxby, 2005, Kriegeskorte, et al., 2008, Mahon, et al., 2009, Caramazza & Shelton,
1998). Within faces, there was no discernible difference between male and female faces, and dog
faces were more similar to human faces than were monkey faces. The reason why dog faces
should be more similar to human faces than monkey faces is a matter of speculation. Perhaps,
this reflects greater familiarity of dog faces compared to monkey faces, or a greater perceived
expressiveness for dogs than monkeys. Possibly the effect reflects something idiosyncratic to our
stimuli—further experimentation would be needed to know for sure. Among inanimate objects,
shoes and chairs were more similar to each other than to houses.

A notable aspect of the similarity structure—especially in VT—is remarkably high replicability
both within and between subjects—providing strong evidence for a common code in VT for the
representation of faces and objects. Replicability and between-subject correspondence were less
for similarity structures in EV. Thus, similarity structures in EV were more variable as reflected
by both within and between-subject comparisons. We assume activations in EV to be driven
by low-level visual features. As such, variation in low-level visual features within experimental
conditions may have contributed significant noise to the similarity calculations which involved
averaging across stimuli within each category. Stimuli within each condition consisted of many
different exemplars, each with slightly different characteristics—outline contours, points-of-view,
etc.—all of which may have been a source of low-level visual variation. In addition, subjects were
not required to fixate a central point and were thus free to move their eyes while viewing the
stimuli, possibly introducing more noise into the analysis.
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Although similarity structures in EV were less consistent than those in LO and VT, there was a
reliable shape to the similarity spaces in EV as captured by dimension 2 in the INDSCAL analysis,
providing evidence that activation corresponding to low-level visual attributes was captured in the
structure of the similarity spaces in EV. The orderly translation of weights from dimension 2 to
dimension 1 moving from EV to LO to VT provided direct evidence of the functional relationships
between these regions in that the representational content can be seen to transform incrementally
from early to mid to late stages of the object vision pathway.

Conclusion

These experimental results highlight the virtues of similarity-based MVP analysis. The ab-
stract nature of similarity structures allowed for the depiction of cognitive structure in terms of
the relationships among stimuli. These relationships were explored using cluster analysis and
multidimensional scaling helping to reveal the underlying structure of representation in three
brain regions. Rather than the engagement or disengagement of specific areas as a function of
experimental conditions, similarity analysis reveals cognitive states represented as distributed
patterns in larger regions of cortex. The source independence afforded by the fixed dimensional
space of similarity structure allowed for the direct comparison of structures across subjects re-
vealing a highly replicable common code for faces and objects in VT. This ability to compare
similarity structures across subjects satisfies an important desideratum in cross-subject MVP
analysis. Finally, the comparison of similarity structures across functionally connected brain
regions—representing three stages of the object vision pathway—reveals how representations are
transformed from early visual cortex through to VT.

Similarity-based analyses provide a powerful means for uncovering the structure of cognitive
representations present in fMRI data. Yet, we have only scratched the surface of its full potential.
There are numerous available techniques for analyzing similarity structure that have been devel-
oped outside the realm of fMRI that could be incorporated into the fMRI toolbox for the further
exploration of cognitive representation. Additional techniques include clustering algorithms (e.g.,
Spectral Clustering, Ng, Jordan, & Weiss, 2002) and additional methods for analyzing individ-
ual differences (e.g., INDCLUS, Carroll & Arabie, 1983; DISTATIS, Abdi, Dunlop, & Williams,
2009). Methods for individual differences multidimensional scaling and clustering provide means
for directly assessing the relative contributions of various dimensions that shape similarity spaces
from different domains—including, brain regions, individual subjects, or alternate measures like
similarity judgments.
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