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Common or folk knowledge about animals is dominated by three dimensions: (1) level of cognitive complexity or “animacy;” (2)
dangerousness or “predacity;” and (3) size. We investigated the neural basis of the perceived dangerousness or aggressiveness of animals,
which we refer to more generally as “perception of threat.” Using functional magnetic resonance imaging (fMRI), we analyzed neural
activity evoked by viewing images of animal categories that spanned the dissociable semantic dimensions of threat and taxonomic class.
The results reveal a distributed network for perception of threat extending along the right superior temporal sulcus. We compared neural
representational spaces with target representational spaces based on behavioral judgments and a computational model of early vision
and found a processing pathway in which perceived threat emerges as a dominant dimension: whereas visual features predominate in
early visual cortex and taxonomy in lateral occipital and ventral temporal cortices, these dimensions fall away progressively from
posterior to anterior temporal cortices, leaving threat as the dominant explanatory variable. Our results suggest that the perception of
threat in the human brain is associated with neural structures that underlie perception and cognition of social actions and intentions,
suggesting a broader role for these regions than has been thought previously, one that includes the perception of potential threat from
agents independent of their biological class.
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For centuries, philosophers have wondered how the human mind organizes the world into meaningful categories and concepts.
Today this question is at the core of cognitive science, but our focus has shifted to understanding how knowledge manifests in
dynamic activity of neural systems in the human brain. This study advances the young field of empirical neuroepistemology by
characterizing the neural systems engaged by an important dimension in our cognitive representation of the animal kingdom
ontological subdomain: how the brain represents the perceived threat, dangerousness, or “predacity” of animals. Our findings
reveal how activity for domain-specific knowledge of animals overlaps the social perception networks of the brain, suggesting
domain-general mechanisms underlying the representation of conspecifics and other animals. j
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a, The stimuli were images from 12 animal categories spanning a 3 XX 2 experimental design with three taxonomic groups (mammals, reptiles, and bugs) and two levels of threat (high

and low). b, While undergoing fMRI scanning, subjects saw the stimuli presented in sets of three images in brief succession while they monitored whether the images all came from the same animal
category. Category-specific brain responses were estimated using the GLM with regressors modeling the encoding trials that contained all the same category. Catch trials (i.e., trials that contained

an oddball category) were infrequent and were not included in the subsequent analyses.

dom represents an exceptional test domain: knowledge of ani-
mals is relevant to human brain evolution, and nature provides
objective criteria for evaluating animals along multiple salient
dimensions.

Classic studies (Henley, 1969; Rips et al.,, 1973) show that
knowledge of animals is shaped by two salient dimensions,
namely “predacity” and size. Although the representation of size
has been studied (Konkle and Caramazza, 2013), no previous
neuroimaging work has systematically investigated predacity
(but see Davis et al., 2014 for a hypothetical example). The term
predacity has precedent in the psychological literature describing
an implicit psychological dimension underlying similarity judg-
ments. However, to avoid confusion with the biological concept,
which entails specific relationships of eating and being eaten, we
refer instead to perceived threat or aggressiveness; note that,
whereas a frog is generally viewed as harmless, it is a dangerous
predator to a fly. We assume the psychological dimension of
“predacity” falls under this more general notion.

In previous work (Connolly et al., 2012), we found that the
representational structure in occipitotemporal regions— collec-
tively, the lateral occipital complex (LOC) known to support
visual categories (Grill-Spector et al., 2001; Haxby et al., 2001)—
reflected semantics in detail sufficient to support taxonomic hi-
erarchies of animal classes, such as mammals versus birds versus
bugs. Furthermore, the first principal component (PC) of the
multidimensional similarity space in LOC suggested an “animacy
continuum” (Huth et al., 2012). Pictures of nonhuman mammals
evoke responses in the LOC similar to those evoked by viewing
pictures of humans, whereas bugs evoke patterns similar to inan-
imate objects, suggesting a human-centric hierarchy with
mammals near the top and insects near the bottom. A similar
continuum underlies similarity judgments based on taxonomy;
however, the psychological distinction between the “least-
animate” animals and actual nonliving stimuli was much greater
than that observed in the brain; thus, the living—nonliving dis-
tinction is not an obvious feature of the LOC (Sha et al., 2015).

However, animacy is not the only dimension represented in
the LOC. Although it is a central feature of the LOC, patterns for
animal classes remain distinct after removing animacy-related
variance from category-specific multivariate data (Connolly et

al., 2012). Furthermore, the general representational space in the
LOC, characterized by responses to a full-length feature film, is
best modeled by no less than 35 unique components (Haxby et
al., 2011). These observations suggest that representation in
the LOC comprises multiple feature dimensions encoded in
overlapping multiplexed neural population codes. Cat-
egory-specific patterns measured with fMRI reflect spatially
quantized sums of activity of intermingled population
responses. Our challenge is to tease apart the unique compo-
nents of this high-dimensional space to isolate the represen-
tation of specific semantic dimensions.

To this end, we investigated how a dimension known to be
important for knowledge about animals—namely, “predacity” or
more generally perceived threat—is represented and how it is
disentangled from the representation of animacy. We measured
brain activity evoked by viewing 12 animal classes selected to vary
along the dimensions of threat and taxonomic class spanning the
range of animacy (Fig. 1). We hypothesized that threat would be
identified with one of the as-yet unspecified secondary dimen-
sions within the complex LOC space. However, as we report be-
low, this hypothesis was not supported by our results. Instead,
threat was a prominent dimension in a distributed network cen-
tered on the right superior temporal sulcus (STS), emerging as
independent from low-level visual and taxonomic representa-
tions in a posterior-to-anterior progression. The overlap of this
network with the social perception network suggests common
mechanisms for perceiving the dangerousness of animals and the
intentions and dispositions of other humans.

Materials and Methods

Participants

Participants were 12 adults with normal or corrected vision from the
Dartmouth College community (age range, 20—35 years; mean age, 25
years; seven males). Subjects were screened for MRI scanning and pro-
vided informed consent in accordance with the Institutional Review
Board of Dartmouth College. Subjects were paid an hourly rate for
participation.

Stimuli and design
Subjects were shown still images of 12 different animal categories: deer,
cottontail rabbits, wolves, cougars, tortoises, frogs, cobras, crocodiles,
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ladybugs, monarch butterflies, tarantulas, and scorpions. These 12 cate-
gories span the cells of a three X two experimental design (Fig. 1a) with
three levels of taxonomic classes (mammals, reptiles and amphibians,
and bugs) and two levels of threat (low and high). Two unique animal
categories are assigned to each cell of this design. For simplicity, we will
refer to the taxonomic group containing three reptiles and one amphib-
ian as “reptiles.”

The images used for the fMRI experiment comprised 20 color photo-
graphs for each of 12 animal categories, plus left—right flipped comple-
ments, for a total of 40 unique images per category. The images were
collected from the public domain. The images were edited to remove the
background and scaled to the maximal size in a 400 X 400 pixel frame.
Images were presented to subjects in the MRI scanner using a rear-
projection screen positioned at the rear of the scanner and viewed with a
mirror mounted to the head coil. Viewed images subtended ~10° of
visual angle. The stimulus presentation program was written in Python
and used the PsychoPy package (Peirce, 2007).

Procedure

The stimuli were presented to subjects using a slow event-related design
while they were engaged in a simple oddball task (Fig. 1b). “Same” en-
coding events consisted of three different images of the same category
presented consecutively for 500 ms each. Occasional catch trials were
pseudorandomly interspersed with same-encoding trials. Catch trials
were oddball events in which the first two animals presented were from
the same class but the third animal was from a different class (e.g., rabbit
rabbit tarantula). Subjects were required to respond on each event indi-
cating same events by pressing the index finger button and oddballs by
pressing the middle finger. Events were followed by a 4500 ms inter-
stimulus interval [6000 ms stimulus onset asynchrony (SOA)]. During
null events, a fixation cross remained on the screen for the 1500 ms
stimulus presentation interval. Event order was determined using a Type
1, Index 1 de Bruijn sequence (Aguirre et al., 2011) for first-order coun-
terbalancing according to a 14 condition design: 12 target conditions plus
oddball and blank events. There were three concatenated sequences split
into seven runs with six presentations of each stimulus condition per run.
To preserve the continuity of the de Bruijn sequence across scanning
runs, three preceding dummy trials were added to the beginning and one
to the end of each run. There was a total of 88 trials per run, 72 of which
were target category trials (excluding oddball, blank, and dummy trials),
and a grand total of 616 trials in the experiment, with 504 target encoding
events.

Image acquisition

Brain images were acquired with a 3T Philips Achieva Intera scanner with
a 32-channel head coil, using gradient-echo echo-planar imaging with a
sensitivity-encoded reduction factor of 2. The MR parameters were as
follows: TE, 35 ms; TR, 2000 ms; flip angle, 90° resolution, 3 X 3 mm;
matrix size, 80 X 80; and FOV, 240 X 240 mm. There were 42 transverse
slices with full-brain coverage, and the slice thickness was 3 mm with no
gap. Slices were acquired in an interleaved order. Each of the seven func-
tional runs included 276 dynamic scans and four dummy scans for a total
time of 560 s per run. At the end of each scanning session, a single
high-resolution T1-weighted (TE, 3.72 ms; TR, 8.176 ms) anatomical
scan was acquired with a 3D turbo field echo sequence. The voxel reso-
lution was 0.938 X 0.938 X 1.0 mm, with a bounding box matrix of
256 X 256 X 220 (FOV, 240 X 240 X 22 mm).

Image preprocessing

fMRI image preprocessing was done using AFNI (Automated Functional
Neuro-Imaging) software (Cox, 2012; free software available for down-
load online from http://afni.nimh.nih.gov/afni). Time series data were
corrected for differences in slice acquisition time (using 3dTshift in
AFNI) and subject movement (3dvolreg). The time series were despiked
(3dDespike) to remove any extreme values not attributable to physiolog-
ical processes, thus correcting for normal scanner noise. The time series
were detrended (3dDetrend) within each run to remove fluctuations in
signal attributable to scanner drift using up to fifth-order polynomials.
Motion-related components estimated during the motion-correction
step were also removed from the signal during the detrending step. Val-
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ues were normalized within each run to make the sum-of-squares equal
to 1. Using a general linear model (GLM, using 3dDeconvolve in AFNI),
we estimated the voxelwise magnitude of the hemodynamic responses
evoked by each of the 12 stimulus classes. Predictor variables were con-
structed for each stimulus by convolving the presentation time courses
with a canonical gamma-variate hemodynamic response model. Catch
trials were modeled as nuisance variables and were not analyzed further.
For each subject, eight separate GLM analyses were computed: one fitting
the predictor variables for the entire seven-run experiment and one for
each individual run. The voxelwise 3 weights for each stimulus class were
used as input for all subsequent multivariate pattern and representa-
tional similarity analyses [multivoxel pattern analysis (MVPA) and rep-
resentational similarity analysis].

The high-resolution T1-weighted images were used as input to Free-
surfer (Fischl and Dale, 2000) for cortical surface reconstruction (using
the Freesurfer recon-all suite, which is freely available for download on-
line; http://surfer.nmr.mgh.harvard.edu). The Freesurfer generated sur-
faces were transformed to SUMA (Surface Mapping) format using
SUMA (Saad and Reynolds, 2012; http://afni.nimh.nih.gov/afni/suma/).
Each subject’s surfaces were fitted to high- and low-resolution standard
mesh grids. The high-resolution grid was defined by an icosahedron with
64 linear divisions, yielding 81,924 nodes for the whole-brain cortical
surface, and the low-resolution grid was defined by an icosahedron with
32 linear divisions, yielding 20,484 nodes. The standard mesh grids allow
for anatomical correspondence between surface nodes across subjects
based on sulcal alignment of inflated surfaces to the MNI template pro-
vided by Freesurfer.

Surface-based MVPA searchlight

Functional brain mapping was done using a surface-based searchlight
algorithm (Oosterhof et al., 2010, 2011) as implemented in PyMVPA
(Hanke et al., 2009), which is documented and freely available for down-
load online (http://www.pymvpa.org). The surface-based searchlight
technique is a refinement of original spherical searchlight proposed by
Kriegeskorte et al. (2006). Spherical searchlights run the risk of including
mixtures of voxels from across sulcal boundaries and voxels that may
include only white matter or CSF, making some results difficult to inter-
pret. Surface-based searchlights ensure that only gray-matter voxels from
contiguous regions on the cortical manifold are included in the same
searchlight. This method is fully explained by Oosterhof et al. (2011). A
brief explanation is provided here. Using each surface node on the low-
resolution standard surface mesh grid, that node defines the center of a
local disc comprising neighboring surface nodes of the high-resolution
standard grid. Voxels in a subject’s native volume are mapped to the
surface nodes of the high-resolution grid using a many-to-one mapping
so that each voxel is assigned to only one surface node, and each surface
node may be assigned more than one voxel. Voxels are assigned to their
closest node in the volume space. The radius of the searchlight disc was
expanded outward from the center node until a desired number of voxels
were selected: we used discs containing 100 voxels for all searchlight
analyses. Iterating over all of the surface nodes in the low-resolution
surface grid, each unique set of 100 voxels in turn was treated as a mul-
tivariate dataset, and some measure was computed (e.g., MVPA classifi-
cation accuracy) and recorded at the center node. Subsequent group
analyses were done by computing statistics across subjects (e.g., one-
sample ¢ test against chance classification performance) at each node in
the low-resolution standard surface mesh grid.

Four-step analysis procedure

We analyzed the data using a four-step procedure. First, we ran search-
light pattern classifiers to identify all regions that contained information
for discriminating stimuli based on either taxonomy or level of perceived
threat. The purpose of this step was to characterize the anatomical extent
of entire pathways that are likely to process these semantic dimensions.
Second, we investigated the internal organization of each pathway. Be-
cause it is unlikely that the functional profile across a pathway is uniform,
it is necessary to segment the pathways to better understand how infor-
mation is organized and transformed across the pathway. Therefore, we
segmented the pathways using a clustering algorithm to group surface
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nodes based on similarity of searchlight-defined dissimilarity matrices
(DMs). This technique provides a functional segmentation of the path-
ways. Third, we visualized the representational spaces within subregions
of each pathway using multidimensional scaling (MDS). Finally, we eval-
uated the structure of the information content across each pathway by
comparing neural DMs from each functional cluster to a set of models
that predict structure based on visual features and behavioral judgments.
The following sections provide details for each of the four steps in our
pipeline.

Step 1: localization using support vector machine patterns classification.
Using the surface-based searchlight approach described above, we local-
ized all brain regions supporting category-specific information based on
either taxonomy or threat. For this purpose, we used support vector
machine (SVM; Cortes and Vapnik, 1995; Chang and Lin, 2011) pattern
classifiers, as implemented in PYMVPA (Hanke et al., 2009). To classify
our stimuli based on superordinate categories, such as taxonomy (e.g.,
mammals vs reptiles vs bugs) or threat (e.g., high vs low), we split the data
to avoid training and testing on the same individual subordinate classes
(e.g., cougars). In the high-dimensional representational space, some
dimensions may carry subordinate category-specific information (e.g.,
information specific to cougars) but not necessarily about taxonomy or
threat. A decision boundary influenced by such dimensions with cougars
in the training set will result in correct classifications at the superordinate
level whenever a cougar is encountered in the testing set, leading to
inflated superordinate classification accuracies based on confounded
subordinate-level information. We split the data into cross-validated
testing and training folds using one design factor (e.g., taxonomy)
and then tested classification of the second factor, in this case, threat level
on the left-out taxonomic class. Thus, when training to discriminate
taxonomy, we trained the classifier to learn mammals versus reptiles
versus bugs by only having one-half of the stimulus categories in the
training set (e.g., only those with low threat) and then testing on the other
half (e.g., only those with high threat). We then repeated training and
testing by switching the roles of the different halves of the stimuli (e.g.,
train using only high threat and then test using only low threat). Simi-
larly, when training a classifier to discriminate between high and low
threat, we would train on two of the taxonomic classes (e.g., mammals
and reptiles) and then test on the left-out class (e.g., bugs). All possible
combinations of stimulus class-based cross-validation folds were tested,
and the mean accuracies were computed for each subject and recorded at
the center node for each searchlight.

For multiclass SVM classification (i.e., mammals vs reptiles vs bugs),
we used the standard implementation found in PyMVPA, which com-
putes all linear maximum-margin hyperplanes separating every pair of
classes. Test items are classified by each pairwise SVM and then ulti-
mately assigned to the class that received the maximum number of votes.
The soft-margin parameter, C, was automatically scaled by the norm of
the training data for each data fold.

Step 2: organization of surface nodes into functional clusters. To identify
regions of interest (ROIs) that represented coherent functional subre-
gions of the larger networks, we clustered the surface nodes based on the
similarity between local representational structure measured as DMs.
First, for each node to be clustered, we defined its DM as the set of
correlation distances between all pairs of animal categories for the 100-
voxel searchlight volume centered on that node. The DMs for all nodes to
be clustered were vectorized and used as the rows in an N X M matrix,
where N is the total number of nodes and M is the total number of
pairwise distances in the upper triangle of the DM (i.e., 66 given 12
stimuli). Because the surface nodes were anatomically aligned between
subjects using the standard mesh grid, a unique N X M matrix was
produced for each subject in which the rows corresponded to the same N
nodes.

We used hierarchical clustering using the Ward method (Ward, 1963),
implemented in the Scikit-learn Python package (Pedregosa et al., 2011).
The stability and reproducibility of the clusters is calculated using cross-
validation across subjects according to the following scheme based on the
study by Yeo et al. (2011). First, we calculate the searchlight-based DMs
for all subjects. Then, for each surface node, we take the average DM
across a subset of subjects—a randomly selected half of the subjects. We
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then use Ward clustering to find k cluster solutions for k = 2 through k =
100 clusters on this data. For each k clustering, we then predict the clus-
tering solution for the second half of the data based on the centroids
determined by the clustering solution on the first half of the data, yielding
a cluster prediction map. Next, we run the clustering algorithm again on
just the second half of the data with k clusters. We then calculate a
consistency measure by comparing the predicted cluster map with the
cluster map resulting from clustering just the second half of the data. We
compare these maps using an adjusted mutual information statistic
(Vinh et al., 2009). We repeated the process 1000 times with different
random halves of the data for each k for k = 2 through k = 100. Maxi-
mum consistency for clustering the threat maps was found using seven
clusters, whereas maximum consistency for the taxonomy maps was
found with 10 clusters. Thus, we chose the k = 7 and k = 10 solutions
for the threat and taxonomy networks, respectively, for additional
investigation.

After determining the clusters based on representational similarity, the
found clusters were subjected to a secondary spatial clustering step. The
purpose of this step was to exclude isolated nodes and to identify ana-
tomically plausible functional clusters. Spatial clustering used a proxim-
ity criterion of 10 mm and a neighborhood criterion of 20 nodes, i.e., 20
neighboring nodes within 10 mm nearest neighbor, and was imple-
mented using the AFNI SurfClust program.

Step 3: visualization of representational spaces within clusters. For visu-
alization of the representational structure within the cluster-defined
ROIs, we used STATIS (Structuration des Tableaux A Trois Indices de la
Statistique; Abdi et al., 2012). STATIS is a method for combining data
tables from multiple subjects to provide a group MDS solution using
principal components analysis (PCA; Kruskal and Wish, 1978; Abdi and
Williams, 2010; Abdi et al., 2012). Each participant contributes a data
matrix with dimensions N X M, where N is the number of stimulus
classes (in our case 12) and M is the number of voxels. Note that our
cluster-defined ROIs are defined over surface nodes in the standard mesh
grid, but the mappings from the nodes to the corresponding voxels in
each subject are unique; therefore, the value of M varies across subjects.
Before analysis, the individual data tables were mean centered along the
columns, mean centered along the rows, and then normalized along the
rows by dividing the row values by the row norms. Note that this trans-
formation yields N X N cross-product matrices that are equivalent to
Pearson’s correlation matrices on the rows. We first analyze the between-
subject correspondence between representational structures by comput-
ing the eigen decomposition of the S X S Ry matrix (Abdi, 2007), where
S is the number of subjects (in our case 12), which reflects the pairwise
correlations between similarity structures for all pairs of subjects. The
first eigen vector provides weights for each subject that correspond to
how similar this subject’s similarity space is to the group average. These
weights may also be used to identify individual differences and outliers
among the subjects. The weights are then used to scale the original N X M
data matrices for optimally scaling individual contributions to a group
compromise data matrix. We combined the weighted subtables by stack-
ing them horizontally to produce an N X M group compromise, where M
is the sum of M across subjects. The group PCA solution is then com-
puted using the singular value decomposition of the compromise matrix.
After computing the PCA of the compromise, we compute confidence
intervals for the factor scores for each stimulus class on each PCA dimen-
sion. This is done using bootstrap resampling of subjects with replace-
ment and projecting the recalculated factor scores into the PCA space
(Abdi et al., 2009). We visualize the distribution of bootstrapped factor
scores by fitting ellipses to the factor score clouds in two dimensions
containing 95% of the points.

Step 4: evaluation of models for explaining representational structure.
Similarity ratings were collected using Amazon’s Mechanical Turk
(AMT) crowd sourcing service (Mason and Suri, 2012). Subjects per-
formed a triad judgment task in which they chose the odd-one-out from
a set of three images that were presented side by side. In the taxonomic
condition, subjects were instructed to make decisions based on the “kind
of animals depicted.” In the threat condition, subjects were instructed to
make their decisions based on “how dangerous” the animals were. The
total number of combinations of 3 of 12 stimuli give a total of 220 unique
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uncorrected for multiple comparisons.

triads. For a given condition, every unique triad was judged by 10 differ-
ent AMT workers, while each worker was assigned a subset consisting of
one-fourth (55) of the triads. Across conditions, 80 anonymous raters
made a total 4400 triad judgments. Raters were paid a fixed sum for each
set of 55 judgments. Triad judgments were converted to DMs following
the procedures described by Connolly et al. (2012). The resulting behav-
ioral DMs were used as models of semantic spaces separately reflecting
threat-related semantics and taxonomy-related semantics. Henceforth,
we refer to the threat and taxonomy behavioral models as THREAT and
TAX, respectively.

In addition to these behavioral models, we used a computational
model of visual processing in the primary visual cortex to model the early
visual neural response to the stimulus images (HMAX; Serre et al., 2007).
This standard model is a hierarchical bank of Gabor wavelet filters with
various orientations, spatial frequencies, and visual field locations. We
used the C1 units of the HMAX model to model a grayscale version of
each stimulus image. C1 units are the second layer of the HMAX model
and are said to have response profiles similar to those of complex cells in
the striate cortex. The C1 unit vectors for each stimulus were averaged
across exemplars for each of the 12 animal categories, and the DM for this
early visual model (VIS) was calculated using correlation distance be-
tween all pairs of these averaged C1 unit vectors.

The THREAT model was not correlated with TAX (r = 0.01) or VIS
(r = —0.02), and TAX and VIS were moderately correlated with each
other (r = 0.33).

When comparing model DMs with neural DMs, it is important to
calculate a measure of the noise ceiling that reflects the maximum corre-
lation between DMs that can be expected given the level of noise inherent
in the model. In our model DMs derived from behavioral judgments, the
source of noise is intrasubject and intersubject differences, whereas in
VIS, noise for a particular category, e.g., scorpions, arises from differ-
ences across exemplar images of that category. To calculate the noise
ceiling for VIS, we computed the average correlation between different
approximations of VIS using bootstrap resampling of our stimuli for
each category, yielding a new VIS DM on each iteration. We then calcu-
lated the noise ceiling as the average correlation between all bootstrapped
VIS DMs. We then repeated this step for TAX and THREAT using boot-
strap resampling of our AMT subjects to measure the effects of between-
subject variation.

Computing environment

Stimuli delivery, data preprocessing, and analysis were performed using
GNU/Linux Debian operating system and software with additional neu-
roscience software from the NeuroDebian repository (Halchenko and
Hanke, 2012).

Results

The SVM classification searchlight revealed several regions that
carry information that discriminates between low- versus high-
threat animals (Fig. 2). The searchlight results reflect classifiers
trained using stimuli from two of three superordinate animal
categories—mammals, reptiles, or bugs—and then were tested
on the left-out category. For example, a classifier trained to sep-
arate high- versus low-threat animals based only on exemplars
from mammals and bugs was then tested on just the reptiles. This
conservative cross-validation scheme ensured that accuracy for
threat was not attributable to learning to classify individual sub-
ordinate classes or learning narrow-scope threat variation that
might apply within taxonomic class comparisons only.

The regions that carried information related to threat in-
cluded primarily an extended area in the right STS with addi-
tional patches of cortex in the left posterior STS (STSp), left
anterior part of the intraparietal sulcus, left inferior frontal sul-
cus, a portion of early visual cortex (EV) along the calcarine
sulcus, and several smaller isolated locations in the frontal lobes
and temporal lobes.

In parallel to the threat analyses, searchlight classification was
done to map three-way taxonomic class discrimination: mam-
mals versus reptiles versus bugs. A similarly conservative cross-
validation scheme was used in these analyses in which a classifier
was trained on high-threat animals only (i.e., wolf, cougar, croc-
odile, cobra, scorpion, tarantula) and tested on only low-threat
animals (i.e., deer, rabbit, tortoise, frog, butterfly, ladybug) and
vice versa. The searchlight results for discriminating taxonomic
classes yielded significant classification accuracy throughout
all of high-level vision cortex, including the ventral temporal,
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Maps showing the clusters found by clustering the surviving surface nodes from the searchlight maps (Fig. 2) based on the similarity between local representational similarity matrices

measured using a searchlight for each surface node. In a second step, the spatial clustering was applied to identify anatomically adjacent groups of surface nodes. 4, The threat map yielded seven

clusters. B, The taxonomy map yielded 10 clusters.

lateral occipital, and posterior intraparietal cortices (Fig. 2). We
also observed significant classification accuracy in the EVs with
the exception of a small region at the occipital pole. The extent of
the taxonomic classification map mostly replicates our previous
findings (Connolly et al., 2012; Sha et al., 2015).

The SVM searchlights identified regions of cortex that carry
information for discriminating between the different levels of
threat and taxonomy, but this information sheds little light on
the functional organization within these regions or about how the
different regions might be related to each other. To investigate
the organization within networks, we used hierarchical clustering
to subdivide the above-threshold nodes from the SVM maps, i.e.,
those nodes with T > 3 in the group analysis. [Note that ¢ tests
have been shown to be robust against violations of normality
(Rasch and Guiard, 2004), but their use for making valid popu-
lation inferences about information measures may be controver-
sial. Our choice of the t test in this context reflects standard
current practice.] This analysis identified clusters of nodes with
similar representational geometries, as indexed by the represen-
tational DMs of responses to the 12 animal categories. Figure 3A
shows the seven clusters from the threat map. The spatial
clustering step with clustering criterion of 20 neighbors and
proximity 10 mm yielded four large anatomical clusters: (1)
the right anterior STS (STSa, cluster 7); (2) the right mid-STS
(STSm, cluster 6); (3) the right STSp (cluster 5); and (4) the
EV (cluster 1). Clusters 2—4 yielded no nodes surviving our
initial spatial clustering criteria. For completeness, to include
these clusters in the analysis, we relaxed our spatial clustering
criterion to require just 10 neighbors instead of 20, keeping the
proximity criterion at 10 mm. The locations of clusters 2—4
can be seen in Figure 3.

All 10 of the clusters derived from the taxonomy map yielded
spatially coherent clusters (Fig. 3B). The pattern of clusters
emerging from the taxonomy map resembles a bilateral progres-
sion of functionally related regions along the ventral and lateral
occipitotemporal pathway. Starting with cluster 1 in the EV, the
lateral and ventral anterior progression is mirrored bilaterally

from clusters 3 through 7. Along the medial surface starting from
the occipital pole, the progression is slightly different: starting in
the EV, cluster 1 gives way to clusters 2, 8, and then 9 along the
medial anterior progression, with cluster 10 appearing only on
the right.

To visualize the representational structure within regions, we
used MDS calculated using STATIS (Abdi et al., 2012). For sim-
plicity, we have included MDS plots (Fig. 4) for the two regions
that showed the clearest effects of threat and taxonomy, STSa
(threat cluster 7) and anterior LOC (taxonomy cluster 5), respec-
tively. The three-dimensional depiction of the representational
space defined over the first three PCs of the STATIS solution for
STSa (Fig. 4A) shows a plane separating high- from low-threat
animals. To estimate the stability of the representational spaces,
we used a bootstrap resampling of subjects to calculate 95% con-
fidence intervals for the factor scores of the stimulus classes on
each PC (Fig. 4, ellipses). The biplots for STSa for PCs 1 versus 2
and 1 versus 3 reflect the stability of the solution and how high-
and low-threat animals are separated from each other as reflected
by non-overlapping ellipses. The representational structure in
taxonomy cluster 5 in the LOC shows strong separation between
mammals and bugs on the first PC, with the reptiles between.
This result mirrors the animacy continuum result that we have
reported previously (Connolly et al., 2012; Sha et al., 2015). PCs 2
and 3 appear to mainly reflect differences among the various
reptiles.

Evaluation of predictive models
Finally, to account for the representational organization within
these regions and how they may be functionally related to each
other, we looked at the relationships among the representational
structures defined by the DMs for each of the regions, two
models of representational structure based on behavioral rat-
ings (THREAT and TAX), and one model of visual features
(VIS; Fig. 5).

The similarity relationships between pairs of DMs are shown
using classical MDS in Figure 6. The MDS solutions were calcu-
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Figure4. MDS for threat cluster 7 (STSa; A) and taxonomy cluster 5 (LOG; right; B). A, Top, Three-dimensional plot showing the first three PCs from STATIS for STSa, color coded for low (blue) and
high (red) threat. The middle and bottom plots show the second and third dimensions, respectively, plotted against the first dimension. B, Top, Three-dimensional plot showing the first three PCs
for the anterior LOC, color coded for mammals (brown), reptiles and amphibians (green), and bugs (purple). Middle and bottom plots show the second and third dimensions, respectively, plotted
against the first dimension. The ellipses show 95% confidence intervals for the values of the factor scores based on 1000 bootstrap resamplings of the subjects. Tau is the percentage of variance
accounted by each PC.

lated separately for threat and taxonomy clusters based on DMs
defined over the following: (1) seven threat clusters and three
models (Fig. 6A); and (2) 10 taxonomy clusters and three models
(Fig. 6B). In both solutions, the first PC captures the maximal
distance between the THREAT model versus the VIS and TAX
models, and the second PC separates VIS from TAX. The pattern

of factor scores for threat clusters (Fig. 6A) shows that cluster 7
(STSa) was closest to the THREAT model, cluster 5 (STSp) clos-
estto TAX, and cluster 1 (EV) closest to the VIS model. The factor
scores for the 10 taxonomy clusters (Fig. 6B) had almost uni-
formly negative values on the threat-defined first PC. Their val-
ues instead spanned the range of the second PC, with the clusters
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DM:s for threat (THREAT), taxonomy (TAX), and the visual model (VIS). THREAT and TAX were derived from behavioral judgments collected using AMT. For THREAT, participants were

instructed to make similarity judgments based on how dangerous the animal is, whereas for TAX, subjects were instructed to make judgments based on what kind of animal was depicted. VIS was
based on features from a computational neural model (HMAX; Serre et al., 2007) to model the visual response to the stimulus images. The THREAT model was not correlated with TAX (r = 0.01) or
VIS (r= —0.02), and TAX and VIS were moderately correlated with each other (r = 0.33). Noise ceiling calculations based on bootstrap resampling of behavioral subjects (for THREAT and TAX) or
stimuli (for VIS) revealed maximum expected correlations with these models to be bounded by r = 0.9, r = 0.9, and r = 0.88 for THREAT, TAX, and VIS, respectively. Model DMs are shown on the

same scale normalized over the interval zero to one.

in the occipital pole (1 and 2) closesttothe A B
VIS model, the transitional occipitotem-  Tax 40 *+ 3e TAXmE
poral cluster 3 neutrally loaded on PC2, L 6‘ (LoC)
and the clusters in the LOC (4—7) nearest g S
to TAX. (STSp) 6 7(STSa) 4o
The factor scores along PC1 for the PCt . L N
threat clusters in the right STS (Fig. 6A) i THREAT  FPct .:
suggest a trend of increasing similarity to 900 THREAT
THREAT in the posterior-to-anterior di-
rection. To quantify this effect, we used 1. 2
the bootstrapped DMs to recalculate the V|-S (EV) 8 2 VI; ,1 S 10
MDS solution in Figure 6A (10,000 times) * g .(E\ij
and for each iteration recorded the dis-
tances between THREAT and each of the  Figure6. Classical (metric) MDS showing the factor scores on the first two PCs for distance matrices defined between clusters

STS clusters along the first PC. For each
iteration, we calculated the slope of the
linear fit to the ordered distances. A neg-
ative slope suggests decreasing distance
between the ROIs and THREAT from
STSp to STSm to STSa. The number of
bootstrapped solutions producing a negative slope was 9873 of
10,000 (p < 0.02).

To measure the amount of unique variance in the brain DMs
accounted for by each of our models, we calculated semipartial
correlations for each brain region and each model DM by first
regressing each model DM on the DMs of the other two models
and then correlating the resultant residuals with the brain DMs
(Fig. 7; Tables 1, 2). Using this method and bootstrap resampling
of subjects, we calculated the unique explanatory contribution
for each model for each region with 95% confidence intervals.

The THREAT model DM was positively correlated with each
of the DM for the threat-derived ROIs. This is expected because
these regions were derived from the THREAT classification
searchlight map. Visual inspection of the posterior-to-anterior
trends along the STS suggest that the influences of the TAX and
VIS models diminish in progression from posterior to anterior,
whereas the relative influence of THREAT increases. The abso-
lute magnitude of the correlation of THREAT with STSa was
significantly greater than that for STSm (p < 0.05; based on the
distribution of bootstrapped partial correlations) and trended
toward significance compared with STSp (p < 0.1).

The purpose of these analyses is to illuminate relationships
between subregions of the networks and the relative goodness of

and predictive models. 4, Factor scores for the first two PCs for the MDS solution calculated from the pairwise DM defined over the
seven threat clusters (circles) and three models (squares). Red arrow corresponds to increasing similarity with THREAT along the
posterior—anterior axis of the right STS. B, Factor scores for the first two PCs for the MDS solution calculated from the pairwise DM
defined over 10 taxonomy clusters (diamonds) and three models (squares). The green arrow corresponds to increasing similarity
with TAX from EV to LOC. The solutions in A and B were calculated separately.

fit for different explanatory models of representation. We have
taken caution to avoid making claims based on evaluation of
ROIs on the same criteria used to identify them. For example, as
noted, it is expected that threat-derived ROIs all correlate signif-
icantly with the THREAT model because these regions were se-
lected initially using searchlight classification for high versus low
threat. However, the observation that VIS best predicts represen-
tational structure in cluster 1 (EV) is not predetermined by the
selection process, although it is consistent with what we know
about the EV. Similarly, TAX predicts representational structure
in cluster 5 (STSp) better than the THREAT model.

Threat representation becomes disentangled from confound-
ing visual and taxonomic representations as the relative influence
of these factors diminishes. To test the relative influences of
THREAT versus TAX and VIS, we used the bootstrapped corre-
lation data to measure the interactions between pairs of ROIs
across the STS and the target model DMs. Thus, to test whether
the relative influence of THREAT compared with VIS increased
from STSp to STSa, we first calculated the difference between
correlation values for THREAT and VIS with STSa for each boot-
strap (STSaqy.y), then we calculated the difference between
THREAT and VIS with STSp (STSpy.v) for each bootstrap, and
finally we calculated the difference between these two quantities
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Figure7. A, Thesemipartial correlations between the three models and the four surviving threat clusters. B, Semipartial correlations between the models and seven clusters visible along the right
lateral surface. Error bars indicate 95% confidence intervals based on bootstrap resampling of the subjects.

Table 1. Semipartial correlations (with +95% confidence intervals) explaining
unique variance accounted for by models (THREAT, TAX, and VIS) for seven threat
clusters

Cluster THREAT TAX VIS

1 0.18 = 0.08 0.09 = 0.05 0.75 + 0.03
2 0.28 = 0.23 —0.15 = 0.19 0.17 = 0.19
3 0.27 = 0.13 0.20 = 0.15 0.01 = 0.14
4 0.14 = 0.15 0.15+0.18 0.03 = 0.17
5 0.18 = 0.08 0.44 + 0.09 0.26 = 0.11
6 0.16 = 0.15 0.07 = 0.17 0.16 = 0.16
7 0.33+0.20 0.02 +0.18 0.00 = 0.11

Table 2. Semipartial correlations (with ==95% confidence intervals) explaining
unique variance accounted for by models (THREAT, TAX, and VIS) for 10 taxonomy
clusters

(luster THREAT TAX VIS
1 0.06 = 0.05 0.16 = 0.03 0.75 % 0.02
2 —0.03 = 0.06 0.26 = 0.12 0.58 = 0.09
3 0.02 = 0.05 0.32 = 0.07 0.62 = 0.05
4 0.03 = 0.05 0.54 = 0.05 0.39 = 0.06
5 —0.00 = 0.03 0.62 = 0.03 0.28 = 0.05
6 0.02 = 0.03 0.63 = 0.03 0.26 = 0.04
7 0.06 = 0.04 0.61 = 0.07 0.24 = 0.06
8 0.04 = 0.07 0.44 = 0.09 0.37 = 0.09
9 —0.01 = 0.07 0.44 = 0.14 0.37 = 0.14

10 0.08 = 0.07 0.21 = 0.18 0.20 = 0.13

for each bootstrap (STSary.y — STSpry.v). Because we expect
that the difference between THREAT and VIS will be greater in
STSa than in STSp, we expect these values to be greater than zero,
and so the proportion of the bootstrapped differences below zero
directly give us a p value to test for significance. For the interac-
tion tested by (STSa v — STSprv), the proportion of values
below zero based on 10,000 bootstraps was p = 0.0011, i.e., sig-
nificant at « level p < 0.002. A similar test for the interaction

between STSa and STSm (STSa .y — STSmyyy_y) yielded a pro-
portion of values below zero of p = 0.02, and that for STSm
versus STSp (STSmyy.y — STSpryr.y) was not significant. Thus,
the relative influence of THREAT compared with VIS signifi-
cantly increases from the pSTS to aSTS and from the STSm to
STSa, with a nonsignificant increase between the STSp and
STSm. Parallel analyses testing for the relative influence of
THREAT versus TAX yielded the following: STSapy ¢
STSprim P < 0.0001; STSapy.r — STSmpyp, p = 0.05;
STSmypyp — STSpr. p < 0.0001. Thus, the relative influence
THREAT versus TAX increases from the STSp to STSm and again
from the STSm to STSa.

These analyses show the directionality of the transforma-
tion of representational structure—THREAT emerges as the
predominant explanatory factor from posterior to anterior
along the STS by paring away confounding representations of
low-level visual features and semantic information about
taxonomy.

Visual inspection of trends outside of the STS suggest a similar
posterior-to-anterior tradeoff between the influences of VIS and
TAX. VIS was always more correlated across bootstraps with the
DMs in taxonomy cluster 1 (EV) than with either TAX (p <
0.0001) or THREAT (p < 0.0001). Across the contiguous regions
taxonomy clusters 3-5, the correlations with VIS decrease,
whereas the correlations with TAX increase. To show the signif-
icance of these trends, it suffices to show the following. (1) The
interaction between taxonomy clusters 4 and 3 (C4ry, —
C3.y)—with C4 just anterior to C3—yielded no values less than
zero over 10,000 bootstraps. Thus, the (signed) difference be-
tween the correlations of TAX and VIS in cluster 4 was always
greater than the difference between TAX and VIS in cluster 3
(p < 0.0001). (2) The interaction measured between taxonomy
clusters 5 and 4 (C5¢.y, — C4)—with cluster 5 just anterior to
cluster 4—also yielded no values less than zero. Thus, the differ-
ence between the correlations of TAX and VIS in cluster 5 was
always greater than the difference between TAX and VIS in clus-
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ter 4 (p < 0.0001), consistent with a transition from visual rep-
resentation in the posterior LOC to taxonomic representation in
the anterior LOC.

Discussion

This study investigated how knowledge about the natural world is
encoded in neural populations in the human neocortex. Our
strategy included measuring and evaluating patterns of BOLD
activity across the brain in response to viewing a set of naturalistic
stimuli chosen to orthogonalize psychological dimensions im-
portant for categorization within the animal kingdom ontologi-
cal domain. Following classic studies in cognitive psychology, our
target dimension was perceived threat—referred to in the litera-
ture as predacity—for which the neural basis was unexamined
until now. The other dimension of interest was taxonomic clas-
sification for which we chose representative animals from mam-
mals, reptiles, and bugs. These classes were chosen to span the
implicit dimension we refer to as the animacy continuum, a ma-
jor feature of LOC representation. Our primary finding showed
that, although animacy dominated representational structure in
the LOC, threat emerged as an independent dimension along a
separate dorsolateral temporal pathway.

To summarize our findings, we used searchlight pattern
classifiers to localize regions supporting distinctions based on
taxonomy or threat, resulting in two mostly non-overlapping
pathways: (1) threat classification yielded a set of nodes spanning
from the EV through the right STS; and (2) taxonomic classifica-
tion yielded the familiar ventrolateral occipitotemporal LOC
pathway. To investigate how information is represented and
transformed along these pathways, we used clustering to divide
the pathways into subregions based on intrinsic functional orga-
nization. MDS within subregions provided visual evidence for a
representational space separating animal classes based on per-
ceived threat along the first two PCs in the STSa (Fig. 4A, Threat
Cluster 7) and by the animacy continuum along the first PC in the
LOC (Fig. 4B, Taxonomy Cluster 5). Finally, we illuminate how
information is transformed across each pathway by evaluating
the relative goodness of fit for three explanatory models:
THREAT, TAX, and VIS, respectively, corresponding to two
DMs derived from judgments of threat and taxonomy and one
model of the EV.

Evaluation of the models across the threat pathway revealed
that threat becomes more pronounced compared with other
models in a posterior-to-anterior progression. Structure in the
STSp (threat cluster 5) reflects a combination of THREAT, TAX,
and VIS, with a trend for stronger taxonomic organization, fol-
lowed by early visual features and then threat. The prominence of
taxonomic representation in the STSp suggests that the represen-
tational geometry is an early stage in the emergence of threat as an
independent dimension. Correlations with VIS and TAX dimin-
ish moving from the STSp to STSm (threat cluster 6), whereas
that with THREAT remains mostly constant. The STSa was sig-
nificantly more strongly correlated with the THREAT model
compared with the other models, with a trend toward increasing
absolute correlation with threat in the STSa compared with the
STSp and STSm. These patterns suggest a progression that disen-
tangles the representation (DiCarlo and Cox, 2007) of threat by
paring away representations of early visual and unrelated seman-
tic features to build a clearer, unconfounded representation.

We found no evidence for threat representation in the ventral
pathway. Although we cannot rule out the possibility that ventral
regions might contribute threat-relevant signals as inputs to the
STS pathway, the lack of evidence for such contributions is con-
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sistent with the view of independent pathways for visual repre-
sentation along the ventral and the more dorsal lateral temporal
cortices. Evidence from fMRI, transcranial magnetic stimulation,
and white-matter tractography suggest the independence of the
ventral face pathway—including the occipital and fusiform face
areas—from the lateral ST'S face processing regions (Gschwind et
al., 2012; Pitcher et al., 2014). Furthermore, connections from the
STSa to medial structures including the amygdala (Gschwind et
al., 2012; Kravitz et al., 2013) suggest that this pathway mediates
evaluation of visual stimuli for emotional response; however, our
investigation of the amygdala showed no effects of threat in either
response magnitude or multivariate signal (data not shown),
consistent with previous findings that increased amygdala re-
sponse is evoked only by phobia-relevant stimuli in subjects with
specific phobias and not in normal controls (Dilger et al., 2003;
Ahs et al., 2009).

The STS is widely accepted to be a central component of the
social perception network (Allison et al., 2000) and is part of the
core system for face perception (Haxby et al., 2000) representing
the changeable aspects of faces that convey expressions and in-
tentions. It is also activated by biological motion such as point-
light displays of human actions (Grossman et al., 2010),
geometric shapes that appear to act with agentic purpose (Castelli
et al., 2000; Gobbini et al., 2007), and robots (Shultz and McCar-
thy, 2012). The STSa reflects head-angle invariant representation
of gaze direction (Carlin et al., 2011) and dynamic information
about faces (Pitcher et al., 2011) critical for evaluating the inten-
tions of others. Because the STSa is also a central locus of threat
representation, as we demonstrate, this suggests a relationship
between the representation of threat of animals and social per-
ception. The STSa—and the extended network associated with
it—is involved in the cognitive evaluation of threat, and, in social
contexts, evaluation of threat involves assessing the aggressive-
ness or trustworthiness (Winston et al., 2002; Engell et al., 2007)
of other humans and their current intentions with regards to
oneself.

Social cognition, by definition, involves thinking about
conspecifics. However, there is evidence of overlap in cogni-
tive mechanisms for perceiving conspecific and interspecific
actions. Neural activity evoked by observing motions of ani-
mals overlaps with that for observing motions of humans
(Ptito et al., 2003). Observing mouth movements of dogs,
monkeys, and humans activates motor cortex if the actions are
in the human repertoire (Buccino et al., 2004). The STSp in
dog experts but not non-experts is active when viewing so-
cially relevant dog postures (Kujala et al., 2012), consistent
with findings that perception of fear in dogs is different for
experts and non-experts (Wan et al., 2012).

We also examined a set of regions identified by high classi-
fication accuracy for taxonomic classes, including regions
spanning most of the LOC, taxonomy clusters 3-7 (Figs. 3,
6, 7). Analysis of these regions suggest a progression from early
to late vision: cluster 3 was best predicted by the VIS model,
cluster 4 correlated slightly more with TAX than VIS, and
clusters 5-7 were clearly best predicted by TAX. Our structural
analyses of cluster 5, a central cluster of LOC (Fig. 4), revealed
maximal distinction between mammals and bugs with reptiles
between, providing a replication of the animacy continuum
result reported by Connolly et al. (2012) and Sha et al. (2015)
for which animals with high animacy (e.g., mammals) evoke
greater activity in lateral than medial ventral temporal cortex
than less animate animals (e.g., bugs) that in turn evoke
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greater activity in medial than lateral ventral temporal cortex
(topographical analysis not shown here).

Conclusions

The representation of threat independent of the biological class of
perceived animals is encoded within neural systems that also play
a central role in social perception. The representation of agents—
animals, people, or animated cartoons—that are motivated by
complex inner states is related to the animacy continuum (Gob-
bini et al., 2007, 2011; Sha et al., 2015). However, threat is inde-
pendent of the degree of perceived animacy, insofar as animals
that are high and low in terms of animacy can be predators or
prey, for example, wolves versus rabbits or scorpions versus lady-
bugs. Therefore, perception of threat is apparently related to a
different dimension of social perception: the perception of dis-
positions that can lead to threatening or benign actions. The
internal states that motivate these actions need not be complex or
simple because the relevant factor is the potential danger to one-
self or others.
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