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Over the past decade, object recognition work has confounded voxel
response detection with potential voxel class identification. Conse-
quently, the claim that there are areas of the brain that are neces-
sary and sufficient for object identification cannot be resolved with
existing associative methods (e.g., the general linear model) that are
dominant in brain imaging methods. In order to explore this con-
troversy we trained full brain (40,000 voxels) single TR (repetition
time) classifiers on data from 10 subjects in two different recognition
tasks on the most controversial classes of stimuli (house and face)
and show 97.4% median out-of-sample (unseen TRs) generalization.
This performance allowed us to reliably and uniquely assay the clas-
sifier’s voxel diagnosticity in all individual subjects’ brains. In this
two-class case, there may be specific areas diagnostic for house stim-
uli (e.g., LO) or for face stimuli (e.g., STS); however, in contrast to
the detection results common in this literature, neither the fusiform
face area nor parahippocampal place area is shown to be uniquely
diagnostic for faces or places, respectively.

1 Introduction

Recent work in visual object recognition using neuroimaging measures has
been controversial concerning the way that information may be stored or
encoded in the brain. In particular, some (Kanwisher, 2006; Kanwisher,
McDermott, & Chun, 1997; Spiridon & Kanwisher, 2002) have proposed
that the underlying representations of visual object categories are localized
in specific brain tissue associated with specific types or tokens (e.g., “faces,”
“places,” “body parts or motion”). Other work has suggested that coding
for object identity in the brain is more distributed, similar to a relief or
topographic map in which some pattern of activity may be associated with
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specific object types or tokens (Haxby et al., 2001).1 And in more recent
work along these lines, Hanson, Matsuka, & Haxby (2004) indicate that the
category codes may actually be combinatoric and thus allow the coding
to efficiently reuse voxel information (e.g., neural populations) for each
specific type or token.

Statistical classifiers, which have become much more powerful in the
past decade, we believe, have the potential to resolve this controversy. At
this point, only a handful of researchers have used just a few kinds of clas-
sifiers to attempt to “read out” the contents of brain activity as indexed by
fMRI (Carlson, Schrater, & He, 2003; Cox & Savoy, 2003; Hanson et al., 2004;
Haxby et al., 2001; Haynes & Rees, 2006; LaConte, Strother, Cherkassky,
Anderson, & Hu, 2005; Mitchell et al., 2004; O’Toole, Jiang, Abdi, & Haxby,
2005). Because the BOLD signal is very noisy, typically less than 5% of the
actual signal is useful for classification, and in a pairwise or small multi-
class (e.g., 10 classes) discrimination task, the classifier can possess final
error from 10% (based on averaging single scans in blocks of 10 or 20 scans)
to as high as 40% (on single scans) with unseen sample scans (Hanson et al.,
2004; O’Toole et al., 2005). Standard linear methods based on the general
linear model (GLM) for identification of potentially selective brain regions
are neither crossvalidated nor optimized for performance (Kanwisher et al.,
1997; Kanwisher, Stanley, & Harris, 1999; Spiridon & Kanwisher, 2002). In
a typical block design study, the GLM is used to fit selective time series,
typically accounting for less than 50% of the total variance, despite sta-
tistically significant excursions from a predefined baseline (note that the
significance of a statistical test also implies a high variance accounted for
in the fit of the linear model). This allows for considerable indeterminacy
regarding the identification of object-selective voxels or regions. A key con-
ceptual error in this type of method is using the strength of regression
coefficients as measures of identification when what they are merely in-
dicating is the presence of brain tissue conditional on the presence of the
stimulus exemplar p(VOXEL|FACE> chance), or what many in this field
have called “selective.” Kanwisher (2006) seems aware of this limitation, as
she has most recently described the significance of what she first dubbed
as the “fusiform face area”: “More recently, fMRI has revealed a particular
region in the human brain where this special face perception machinery
apparently resides: the fusiform face area, a blueberry-sized region on the
bottom surface of the posterior right hemisphere that responds significantly
more strongly when people look at faces than when they look at any other
stimulus class yet tested [emphasis added].”

1Still other work in this field (Gauthier, Skudlarski, Gore, & Anderson, 2000) makes a
claim in an orthogonal direction to the analysis here and has proposed that the fusiform
face area seems to code for more general properties of stimulus types (e.g., “expertise”).
Nonetheless, the same argument concerning the confounding identification with detection
discussed below applies and very well may affect the interpretation of their basic claim.
This is not at present the focus of this letter.



488 S. Hanson and Y. Halchenko

The difference in detectability between faces in a prelocalized fusiform
face area (FFA) is at its maximum around 2% above baseline, while for all
other objects except for whole humans, headless bodies, or animal heads,
it is closer to 1%, a factor of 2 in detectability that is quite impressive.
Kanwisher has maintained that although other areas of the brain might be
face selective—that is, they detect the presence of a face stimulus—they are
also not uniquely face selective as she maintains the FFA is. Unfortunately
for this claim, face detection is not face identification. Recall that identi-
fication refers to the ability in a set of alternatives to identify a stimulus
as belonging to a specific category, which may be as small as a specific
token (e.g., recognizing your cat). The degree to which errors occur in
identification results in a classic confusion matrix, which further delineates
the discriminability and similarity of various object tokens (Krantz, Luce,
Suppes, & Tversky, 1971). Detectability is related to identification in that it
is necessary for identification but unfortunately is not sufficient.

Luce (Krantz et al., 1971) has formalized this relationship in what is often
referred to the Luce choice axiom:

P(i |v) = w(i |v)
∑

w(n|v)
for i ∈ n.

Note that choice identification depends on conditional probabilities of
the object given the voxel or feature, however relative to all other potential
alternative category choices. This type of calculation can be made with
strength or detectability measures such as regression coefficients, and in
fact, when it was done correctly by Haxby et al. (2001), they found that the
voxels involved in face identification were actually distributed over much of
the inferior temporal lobe. Kanwisher, not deterred by this demonstration,
pointed out that despite the obvious distributed nature of the code for most
objects she also tested,

although categorical information is apparently spread over a broad ex-
panse of the ventral visual pathway, our analysis finds little or no evidence
that the FFA and PPA carry discriminative information about nonpreferred stim-
uli. This finding is inconsistent with the suggestion of Haxby et al. (2001)
that “regions such as the parahippocampal place area or the fusiform
face area are not dedicated to representing only spatial arrangements of
human faces but, rather, are part of a more extended representation for
all objects” [Spiridon & Kanwisher, 2002, p. 2427; emphasis added].

Indeed, we agree that this is the key test: Do FFA and parahippocam-
pal place area (PPA) carry discriminative information about “nonpreferred
stimuli” (house and face, respectively)? In this letter, using single scans with
a whole brain statistical classifier we show that they do.
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2 Selectivity Measures Are Confounded

In the previous discussion, we pointed out that the work in visual object
recognition using fMRI measures uses the percentage above baseline activ-
ity in voxels to indicate selectivity. Although this may seem like a benign
choice, we will argue this is at the heart of the confusion in this literature
and has tended to perseverate a view that selectivity of cortical tissue can be
measured unambiguously with normalized BOLD responses. Our problem
with these measures is actually twofold: first, in the context of the GLM
(this has nothing necessarily to do with localizers per se), a detection is
calculated based on a contrast between one stimulus condition against one
or possibly others. This type of measure consequently deals only with the
fact that the voxel is implicated as a regressor. It does not indicate that it
is diagnostic or that identification of the category is conditionally depen-
dent on that feature. Worse, the intensity, which covaries with the strength
of the coefficient, is confounded with its location. Consider this: What if
blood flow to cortical regions actually signaled the amount of “work” or
“energetics” involved in processing states? In this case, those BOLD in-
tensities that were not at peak levels might be processing those particular
stimulus patterns more efficiently than those with a peak levels that are
actually “working harder.” This problem requires selectivity measures that
are designed toward diagnostic identification rather than strength of an
association that could reflect voxels that were lower in intensity than others
but were more reliably useful in predicting the correct category for a given
stimulus. Fundamentally, cognitive neuroscientists who study visual object
recognition are interested in whether the putative brain mechanisms are
used to correctly classify or identify the stimulus, not simply respond more
in some location.

3 Identification Tasks

Note that we are discussing voxel identification in contrast to behavioral
identification of a subject who is asked to identify a stimulus that may
be noise masked or otherwise obscured (Grill-Spector & Kanwisher, 2005).
With decreasing mask values, a standard psychophysical function will re-
sult, which indicates that the subject has correctly identified the specific
stimulus, and of course one can measure associated fMRI. Our point here
again is that independent of the task, even in a human subject identification
task, a GLM analysis of voxel values can produce voxels only that are asso-
ciated or most similar to systematic variations of the independent variable.
This should be seen as distinct from a voxel identification function, which
if one chose to pursue and as we have discussed above puts us squarely in
the realm of statistical classifiers.
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4 Statistical Classifiers

There has been enormous progress over the past few years in statistical
classifiers: recent work often focuses on problems in extremely large fea-
ture spaces (more than 100K to 1M) and poor signal-to-noise measure-
ment, often with remarkable out-of-sample generalization (Guyon, Weston,
Barnhill, & Vapnik, 2002). In our, case, the BOLD signal has notoriously low
signal-to-noise gain and may reflect a mixture of various neural signals
and, in particular, field potentials. There is also considerable evidence that
the underlying distribution is nongaussian (Chen, Tyler, & Baseler, 2003;
Hanson & Bly, 2001), indicating that parametric classifiers may underes-
timate valid signal excursions, making approaches such as Haxby et al.
(2001) employed biased toward conservative generalization estimates. In
fact, when Hanson et al. (2004) compared Haxby’s nearest-neighbor clas-
sifier to neural network classifiers, using a conservative cross-validation
estimate showed improvements by as much as 30% to 40% in general-
ization. Much of the improvement in statistical classification often can be
attributed to both a more appropriate classification function (e.g., specific
nonlinearity) and feature weighting or selection (Hanson & Burr, 1990).
Given that we are interested in discovering features (areas of the brain) that
are discriminative for specific stimulus types, we will also want to focus on
whole brain classification. To date, in this visual object recognition domain
(see Mitchell et al., 2004, for use of SVM in a more generic “brain reading”
context and LaConte et al., 2005, who also used single scans in order to
filter support vectors), no one has attempted whole brain, single scan clas-
sification instead tending to focus on regions of interest, not surprisingly
in the inferior temporal (IT) lobe. Nonetheless, it has been pointed out a
number of times in the object recognition field that there are object-selective
or face-selective areas of the brain outside IT (Chao, Martin, & Haxby, 1999;
Gauthier, Tarr, Moylan, Skudlarski, Gore, & Anderson, 2000; Malach, Levy,
& Hasson, 2002). However, it still remains unclear whether these selective
areas are also areas that uniquely identify these object types: Do these other
brain areas that are neither FFA or PPA carry discriminative information
about exemplars like faces or houses? Clearly, given what we have already
established, the only definitive way to answer this type of question is in the
domain of statistical classifiers.

In tests explored here, we employed a number of classifiers; however, in
this letter, we focus on support vector methods (SVMs) (Guyon, Boser, &
Vapnik, 1993). SVMs have many desirable properties: they can learn even
in huge (more than 1 million) feature spaces, they will produce a unique
solution due to problem formulation as a constrained quadratic problem,
they are known to generalize well while working with feature spaces many
orders larger than the data sample size, they can be highly robust over sig-
nificant levels of noise, and they can learn subtle distinctions near the sep-
arating hyperplane that are most ambiguous about each category sample.
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This is all done without having to invest in the costly learning of the com-
plete distribution of each category (on the other hand, this will turn out to
be a disadvantage for visualization).

In order to resolve the question of brain area identification we use the
full brain (approximately 40,000 voxels, we use white matter as noise back-
ground to increase reliability of estimates) and then incrementally searched
for voxels that were uniquely identifying either face or house stimuli.
This was done exhaustively per subject per scan and cross-validated on
independent sets of data. In order to increase the generalizability of our
approach, we also used data from two separate object identification experi-
ments where 10 subjects performed judgments on the two key object types
(FACE, HOUSE) in two different tasks. The first task was from a benchmark
(Haxby et al., 2001), from five subjects while they viewed pictures of faces
and houses as well as four other categories of man-made objects (chairs,
scissors, shoes, and bottles). In this case, subjects performed a one-back
repetition detection task (we designate this as the N-back, or NB, task). In
this letter, we focus on the key stimuli for the identification task of FACE
and HOUSE. In the second task, which avoids spatial memory demand
and focuses a simple perceptual judgment, we used similar high-contrast
black and white stimuli in an oddball task (we will designate task 2 as the
oddball, or OB, task), where trials consisted of simultaneous presentation of
three stimuli in different orientations, in which subjects had to identify the
one that was different (either three faces in FACE trials or three houses in
HOUSE trials) from the others. In both tasks, subjects achieved behavioral
accuracy rates identifying objects above 80% correct. In both cases with full
brain (approximately 40,000–50,000 voxels) data, there were 144 (77 of each
type) samples in task 1 and 200 (100 of each type) in task 2. Both experiments
used a block design with blocks of size 7 in task 1 and size 17 (initially there
were 20 trials as we eliminated repetition time (TR(s)) from the block end
points to reduce autocorrelation effects) in task 2 to train and generalize the
classifier (leave-two blocks-out; although all classification was done with
single scans or equivalently single TRs; see Hanson et al., 2004). In order to
achieve the lowest possible error in generalization, backward or recursive
feature elimination (RFE) was performed (the strategy is after Guyon et al.,
2002; also see Ishak & Ghattas, 2005; Rakotomamonjy, 2003). This approach
has the advantage of detecting the specific object identification brain areas
by harvesting the most sensitive voxels after training and doing subsequent
retraining on this more sensitive reduced set. This process was continued
until there are no more voxels left to test and therefore was exhaustive over
the single-scan brain voxel set.

To avoid potential cross-block contamination of hemodynamic BOLD
signal and therefore accidentally creating a generalization bias, scans at the
beginning and the end of all blocks (category or rest conditions) were dis-
carded. We also routinely hold out whole blocks and test single TRs from
those blocks (holding out all other TRs in that block until they are sampled
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later). This reduces any upward bias from possible correlation within blocks.
A 20 second rest block was also used in both experiments to prevent any
temporal contamination or confusion between category responses. In order
for the SVM classifier to operate on the data, data had to be converted from
raw voxel values to lie primarily within the [−1,+1] range. Two possible
conversion schemes were tested: scaled percentage change relative to base-
line and z-scores relative to the baseline (rest condition blocks) statistics.
SVMs trained on z-scores provided better a generalization on chosen test
cases and thus were chosen for further analysis. Each 3D scan (brain voxels
only) containing roughly up to 40,000 voxels was used as an input sample
for the classification, having a label of the corresponding stimulus condition
(face or house) when that scan was acquired. Specifically all subjects’ data
were submitted to a soft-margin SVM with on average of 500 to 1000 voxels
(approximately a 12% to 15% exponential removal rate until we reached
100 voxels and then removed one voxel at a time until only one voxel was
left) per step backward feature elimination. On each step, each voxel’s di-
agnosticity (see next section) based on the standard SM-SVM was used to
keep or eliminate that voxel. The voxels with the smallest weights on each
step were eliminated.

In order to obtain an unbiased estimate of SVM generalization perfor-
mance, each data set was split into training and testing data sets. Similar to
Hanson et al. (2004), an N-1 block bootstrap procedure was implemented;
specifically, for each training set, a single block from each category (blocks
of both FACE and HOUSE) was taken out for testing, which left B − 1 per
category used for training. All possible combinations of testing blocks from
the two categories were taken, which made up (12 × 12 blocks = 144 and
10 × 10 blocks = 100 bootstrap cases for NB and OB, respectively) train-
ing and testing data sets.2 Each training and testing data set proceeded
through recursive feature elimination independently, and at the end, their
performances were averaged over all classifiers and bootstraps to obtain
generalization estimate for a given subject/SVM. Shown in Figure 1 is
the generalization average error as a function of voxels that remain left
in the training set. Each line shows a single subject performance on out-
of-sample pairs of HOUSE and FACE exemplars. The strength of the line
indicates the group of subjects in either NB (bold lines) or OB (light lines)
tasks. Note that near the minimum, they significantly overlap, with the OB
task starting at a lower error on initial learning.3

2For two of the subjects—one in the OB task and the other in NB—a single block in
each case was found to be corrupted; in those cases, the number of bootstrap opportunities
was 81 and 121, respectively.

3One possible reason for error advantage in the oddball task could simply be the differ-
ence in scanner strength, which for N-Back was 1.5T and for OB was 3T, although there are
other task-related explanations, including that the oddball task required a category judg-
ment, while the N-Back task is focused on single stimulus identification, hence involving
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Figure 1: Generalization error for all 10 subjects on single scans for both kinds
of stimuli held out from a training exemplars. Recursive voxel elimination
produced a minimum for half the subjects at zero error, while over all subjects
on single scans, across both tasks, there is nearly a 98% correct generalization
on unseen scans.

Table 1: Minimal Error and Associated Voxels Count.

Generalization/
Subject NB1 NB2 NB3 NB4 NB5 OB1 OB2 OB3 OB4 OB5

Voxels 200 104 117 120 34 378 125 81 313 225
Error 0.0 6.8 0.0 0.0 6.9 0.0 2.7 6.7 3.0 0.0

Table 1 shows the exact minimum error and associated voxels remaining
at that point. The minimum average error for all subjects in both tasks

no behavioral contrast between stimuli. In either case, a parametric experiment that varied
the difficulty of the categorization judgment might resolve this intercept difference.
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indicated nearly 98% correct out-of-sample cases with three subjects in the
NB task and 2 from the OB task showing zero generalization error.

5 Brain Area Identification

Which areas of the brain are uniquely required for the identification of faces
versus houses? We harvest the classifiers by doing a sensitivity analysis
(similar to Hanson et al., 2004) by effectively asking what their contribution
to classification error is when they are removed versus when present. If
category error significantly changes when the voxel is removed, then we
can infer that it is contributing in a proportionally diagnostic way to the
identification of the FACE or HOUSE category. We discuss next a detailed
description of the visualization methods.

6 Visualization

6.1 Atlas Registration. All brain volumes (tasks, subjects) were first reg-
istered in the following steps: (1) the subject’s sample bold scan, anatomical,
and Montreal Neurological Institute (MNI) anatomical were skull stripped
using BET from FSL tools (Smith et al., 2004); then (2) coregistered stripped
anatomical to stripped MNI using FLIRT (from FSL) to obtain anatomical-
to-MNI transformation; and then (3) coregistered stripped anatomical to
stripped BOLD using FLIRT to obtain anatomical-to-BOLD transformation;
and finally (4) transformed full anatomical into BOLD space using anatom-
ical to BOLD transformation for easy visualization of activation patterns.

6.2 Localizers for the FFA and PPA. In order to localize the FFA and
PPA for analysis, we adopted the standard method in the field to find vox-
els that significantly responded to FACE > “other nonFACE objects” or
HOUSE> “other non-house objects.” In the case of the N-Back task, we
used the original FACE and HOUSE masks in Haxby et al.’s (2001) study,
which were created in the way we are about to describe and consisted of
masks that ranged from 20 voxels to about 100 voxels. In the case of the
oddball study, we used independent localizer scans in a standard GLM
contrasts for FACE > HOUSE and HOUSE > FACE. Although for someone
first hearing this, these procedures may seem tautologous, it is nonetheless
the standard procedure within the literature to establish selective regions
of interest (ROI)s for subsequent testing. There is a controversy that has
erupted recently about this method (Friston, Rotshtein, Geng, Sterzer, &
Henson, 2006; Saxe, Brett, & Kanwisher, 2006), but nonetheless, we main-
tain that this procedure is a reliable way to construct candidate voxels for
more diagnostic approaches as advocated in this letter even though its va-
lidity might be in question. In Hanson et al. (2004), for example, we started
with an ROI mask of 1500 voxels (much larger than the FFA in any par-
ticular subject), and using sensitivity analysis, we were able to reduce the
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diagnostic voxel set to 40% to 50% of the original masks. In what we de-
scribe below, we will intersect the FFA and PPA masks with our sensitivity
masks to determine percentage voxel overlap. The difficulty in identifying
the FFA in particular is that there can be considerable variability in the size
of masks across subjects, and in the original paper (Kanwisher et al., 1997)
that first reported FFA, only 12 of the 16 subjects actually had FFA activity
(functional sampling error?). In any case, finding the FFA by GLM contrasts
of localizer scans is state of the art in the neuroimaging field for candidate
voxel selectivity.

6.3 SVM Sensitivity. There are a number of possibilities for identifica-
tion of diagnostic brain areas. An obvious choice might be all the support
vectors themselves. However, it should be clear that using support vectors
strictly in the margin may be inappropriate in characterizing the diag-
nostic brain areas, as they can represent brain volumes that are near the
separating surface and therefore are “near-misses” in some broader sense
of the category that would not be representative of the brain response to
house stimuli or face stimuli. The other possibility is the nonsupport vectors
(NSV), which was done by LaConte et al. (2005). These are vectors that are
distributed beyond the support vectors; indeed, some may be prototypical
of the brain response, but unfortunately many will not be. In fact, in gen-
eral, even assuming a gaussian spread of the NSVs, only a small minority
will be typical or “best” members of the category. Because SVM optimizes
a margin between the two categories, the actual distribution of members of
the categories is in effect ignored. Hence, ironically the same property that
makes SVM an excellent candidate for classification in high dimensions is
the one that also makes it tricky to visually interpret. We therefore chose
a visualization approach in between these two extreme possibilities; effec-
tively we implemented a sensitivity/perturbation approach (e.g., Hanson
et al., 2004), which measures the error for a given category (face, house)
when the voxel is present versus when it is removed. Specifically, to esti-
mate SVM-based sensitivity, we used one of the simplest criteria proposed
(Guyon et al., 2002; Ishak & Ghattas, 2005; Rakotomamonjy, 2003), which
is simply the reciprocal of the separating margin width W = ‖w‖, where
w = ∑

i αi yi xi . Minimization of this criterion leads to maximization of the
margin width. In the case of linear SVM, the squared values of the sepa-
rating plane normal coefficients (i.e., w2

i ), as stated, effectively correspond
to the change of the criteria W as if the voxel i is removed. Therefore, the
classifier is less sensitive to the features with low w2

i . During recursive fea-
ture elimination, we sequentially eliminated features with the smallest w2

i .
Additionally, in order to increase diagnostic selectivity, we derived weights
for FACE category by using only FACE SVs and for HOUSE category by
using only HOUSE category SVs. Thus, higher voxel value tends toward
typical regions in the classification space for the SV appropriate category.
We will refer to these direction selective voxel coefficients as diagnosticity
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of the voxel direction for or against HOUSE (in blue) and FACE (in red).
We show in Figure 3 (discussed in more detail in section 6.4) diagnosticity
measures for two typical subjects (one from NB and one from OB). We used
a nonparametric method for thresholding these diagnosticity distributions
at p < .01 for each subject, taking into account the nongaussianity of the
underlying diagnosticity distributions (compare with the type 4 method
constructing empirical cumulative distributions; Hyndman & Fan, 1996).
Slices are shown for each subject with specific voxel clusters. Note that SVM
finds fairly contiguous regions, despite no specific bias to do so; in fact, at
lower thresholds (.05), the diagnosticities begin to fractionate through the
whole brain. Unlike a regression analysis (e.g., GLM), which finds “se-
lective” or detection areas, these voxel patterns are unique identification
areas in that they are contributing to a correct classification of one category
against the other and have been cross-validated in independent data sets,
implying that they will generalize to other unseen cases of either faces or
houses.

On this basis, we now can answer our question by assaying the above
threshold identification areas in order to determine whether (1) there are
unique identification areas for face and house and (2) whether the FFA or
PPA is carrying other discriminative information about other nonpreferred
stimuli (in this case, either house or face, respectively).

6.4 Brain Areas Identifying FACEs and HOUSEs. In Figure 2, we show
all areas harvested that were common (intersection set)4 to all subjects in
both tasks that were either highly diagnostic of faces or of houses based
on the sensitivity and diagnosticity analysis as described. The bar plot
shows the percentage of voxels associated with each area at the .01 threshold
using the nonparametric methods. The total in each bar can be computed by
multiplying the percentage against the total number of sensitivities above
threshold in each category (FACE = 363 and HOUSE = 358), so, for example,
about half of the voxels in both HOUSE and FACE, or about 150, fall into the
FFA. Note that these areas are based on the best cross-validated single-scan
classifiers that were nearly 98% correct on out-of-sample exemplars. Hence,
the areas we identify under these constraints are not based on the usual
object-selective interpretation and therefore are not subject to the resultant
ambiguity with methods that are based on similarity or association. They
are, in fact, albeit in a probabilistic sense, necessary and sufficient for the

4We used a very conservative harvesting to include only voxels that were in all 10
subjects and voxels that were above p < .01 and therefore appeared in both tasks. We also
initially averaged over all generalization runs in order to increase the sample power of the
voxel sets per subject. In any case, there was significant overlap (64%) of the same voxels
across generalization runs, and this tended to covary with the minimum generalization
error reached for that classifier. It is appropriate to average across the runs, since any
differences in voxel sets are due to sampling error in classifier estimation and data noise.
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Figure 2: Voxel area cluster relative frequencies intersected over all subjects
and both tasks. For FACE diagnosticities (top), six areas were identified at
p < .01 (FG = fusiform gyrus; PHG = parahippocampal gyrus; PCC = posterior
cingulate cortex; MFG = middle frontal gyrus; STS = superior temporal sul-
cus; PCUN = precuneus) with relative frequencies based total number of
voxels (N = 363) over all areas. For HOUSE diagnosticities (bottom), there
were five areas (at p < .01, N = 358)—some the same and some different:
FG = fusiform gyrus; PHG = parahippocampal gyrus; PCC = posterior cingu-
late cortex; PCUN = precuneus; and LO = lateral occipital. Note that overlap-
ping FACE and HOUSE areas are FG, PHG PCUN, and PCC. Distinctive areas
for FACE included STS, MFG, while for HOUSE, distinctive areas included only
LO.

identification of faces or houses. It is important at this point to clarify that
the classifiers could have found single areas or single voxels as predictive
of a single category. In fact, linear methods tend to be biased toward using
single dimensions (voxels in this case) to minimize classifier error, especially
if area correlations tend to be small between features or voxels. If there are
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large correlations between voxels, these could be minimized by using a
neural network, which can decorrelate features as it classifies. Nearest-
neighbor classifiers such as used by Haxby et al. (2001) in fact are more
biased toward sets of features since their similarity increases incrementally
with more common overlap of voxels. Consequently, we can begin to answer
the question posed in the Introduction: Are there other areas of the brain
that are diagnostic for the identification of faces or houses? Do other areas of
the brain carry discriminative information other than FFA and PPA? Clearly
from our analysis, the answer is yes.

Overall, the diagnostic profile of relevant areas for both FACEs and
HOUSEs are somewhat similar but not identical. Nonetheless there are dis-
tinct areas between each category that are part of a larger network of areas.
In fact, in Figure 3 we show a selection of representative examples from dif-
ferent subjects across both tasks (OB and NB). In the figure, each paired set
of figures in a row is the same subject showing the diagnosticities for FACE
in red (on the left of each pair) and HOUSE in blue (on the right of each
pair). In the first two paired sets, we show FFA sensitivity in two different
subjects across the two different tasks in both FACE and HOUSE stimulus
presentations. For all subjects, fusiform gyrus (and FFA masks overlapped
with 90% of the FG voxels for all subjects and both tasks) appeared for
both FACE and HOUSE, indicating diagnostic value for this area that was
neither specialized nor unique. Also for all subjects across the tasks, the
parahippocampal gyrus (and PPA masks overlapped with more than 70%)
and the posterior cingulate cortex (PCC) was also diagnostic of FACE and
HOUSE. The next three sets show distinctive diagnostic areas, including
unique STS sensitivity for FACE but not HOUSE. Other common diagnos-
tic areas are middle occipital gyrus (including area LO) and middle frontal
gyrus (BA 9). In general, a network of areas was identified as diagnostic
of these two stimulus types, with FACE having a prefrontal area involved,
while HOUSE appeared to involve an area known for visual shape and
texture processing. Note that we are not implying that FACE stimuli do
not require specialized functions (e.g., shape, texture) processing; rather,
the areas that have been identified in specialized experiments induce us to
use labels that have some lexical familiarity with the stimuli we have used,
which otherwise may be misleading in another context where those brain
areas are interacting with many other brain areas. We take up this labeling
problem and other implications from this study in the following discussion.

7 Discussion

This letter started out to answer a simple question that has been plaguing
the object recognition field for the last 10 years: Is there a unique area of
the brain whose sole purpose is to identify faces? Further, is there a unique
area of the brain whose sole purpose is to identify houses? Based on the
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Figure 3: Voxel sensitivities for brain areas that are diagnostic for FACE (red and
on left of each panel) and for HOUSE (blue and right of each panel). In the top
left corner, we show FFA (fusiform face area as measured by a localizer task) in
the first paired panel (same subject, same slice, same task), which shows subject
NB1. Below that is subject OB3, also showing FFA in both slices. On the left
bottom panel, we show PCC, which is diagnostic for HOUSE and FACE, which
both show sensitivity (NB2). The next three paired images show distinctive
areas between diagnostic areas of FACE and HOUSE. The next panel above on
the right shows pSTS (posterior superior temporal sulcus), which is diagnostic
for FACE against HOUSE (subject OB1). The next panel below shows another
FACE diagnostic area (MFG BA9, subject OB5). And in the last paired panel on
the right, we show a HOUSE diagnostic area (LO) for subject NB5.

analysis, the answer is no. To be fair, we should qualify this “no” in two
ways. First, we are not claiming some general property of combinatorial
coding throughout the brain; rather, our results are specific to inferior tem-
poral lobe and in particular for object recognition processes, and second,
we are using standard resolution fMRI (3 mm) which might change the
results dramatically as we descend to more and more detail within inferior
temporal lobe and FFA in particular. Nonetheless, what we did find is a
disjoint network of brain areas that are diagnostic for either face stimuli

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.09-06-340&iName=master.img-119.jpg&w=310&h=254
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or house stimuli. This is consistent with Haxby, Hoffman, and Gobbini’s
(2000) model of face perception in that the areas we found are in fact in-
volved in a common network for processing faces. The common areas in this
analysis include the fusiform face area, specific areas of the lingual gyrus
(which showed up weakly in our analysis), the middle occipital gyrus (LO),
and precuneus; distinctive areas for face stimuli included pSTS and middle
frontal gyrus (BA9). Distinctive areas for house stimuli included only area
LO. However, for faces, there seems to be no evidence in this analysis that
the FFA is unique diagnostically, nor does it appear to be specialized since
it was identified in every subject responding to the house stimuli.

So this observation would seem to put a rest to the controversy that
there are unique areas of the brain that respond only to specific tokens or
types. But not exactly. Kanwisher’s claim is more complicated than just this
observation of the fact that many areas of the brain seem to be required for
identification of these object types, faces and houses, for example. In fact,
the claim is whether presumptive areas that are already selected through
an independent localizer test are uniquely and solely involved in identify-
ing these object types. So to paraphrase Kanwisher, do the FFA and PPA
provide discriminative information about object types other than face and
house, respectively? Clearly again, the answer based on the present clas-
sifiers is yes. Since most of the voxels identified for either face or house
were squarely sitting in the FFA of each subject, this would seem to be
definitive evidence that the FFA does involve discriminative information
about object types other than faces—in this case, houses. We also must note
that the exact overlap of the areas between FFA-face and FFA-house is not
exactly the same, despite voxels that are squarely in the same place (see
cross-hairs); nonetheless, this is normative in the field, as the FFA will have
different locations and shapes across subjects and even within a subject
across sessions or experiments will vary in strength, location, and shape.
Given that houses and faces do look different, it is not impossible that the
FFA does code these stimuli differently, and a high-resolution experiment
might very well produce different distributions of recruited voxels in the
FFA for each stimulus, which might be more consistent with Kanwisher’s
claims. Nonetheless, within the state of the art, our localizations of diag-
nostic cortical areas have no more variability or lack of precision than that
which appears in the standard literature. A potentially more difficult issue
for Kanwisher is that in our results, there were also brain areas that were
distinctive for face or house other than FFA or PPA. For example, it would
be possible to argue that pSTS is the superior temporal sulcus FACE area,
the pSTSFA! We know that this area is sensitive to biological motion, Why
could there not be a part of it specifically dedicated to the unique identi-
fication of faces? Other category tests would be very likely to show these
areas are not distinctive, but more likely part of a larger network of some
kind of face identification system. In terms of uniqueness and given the
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specificity of the claim, that the FFA is claimed to be unique and necessary
for FACE identification, then if it were also to be diagnostic for any other
category such as houses, the claim must be refuted. Again, this would seem
to lay the matter to rest: there is no face area per se, at least in the way that
Kanwisher has defined it. Clearly, we are forced to conclude there is no area
that responds uniquely and solely to faces that could be found in a whole
brain assay of a high-performance single TR classifier.

So that would seem to be the end of the story, and this letter, but as
usual in this problematical and persistent claim, there always seem to be
more twists and turns. In fact, more recently, Kanwisher and her support-
ers have retreated to a more nuanced claim that was always inherent in
the original claim: that of higher-resolution detection. They argue that the
reason that one can find the FFA responding to other object types is that the
fMRI methodology is simply not high resolution enough to identify the tiny
“blueberry” size cluster of cells that are in fact, the fusiform face area. Un-
fortunately for this claim, more recent work involving very high-resolution
fMRI analysis seems to show the opposite of what one might hope if the
blueberry FFA existed (Grill-Spector, Sayres, & Ress, 2006; see also Haxby,
2006, for an interesting discussion of this result). In fact, if the code for
object recognition was distributed in the way that Haxby (e.g., Hanson
et al., 2004; Haxby et al., 2001) for one has contended, one would expect
to see a fractionating of signal at higher and higher resolutions as opposed
to a single “blueberry beacon” of face recognition as Kanwisher’s position
must hold. Even a cursory examination of Grill-Spector’s scans shows a
low-resolution smooth, convex cluster breaking into smaller islands of dis-
tributed structure, making the retreat to high resolution unlikely to clearly
support Kanwisher’s proposal or perhaps any simple object-related pro-
posal (although she reports small face-selective voxels, these are “selective”
in the standard sense, and it remains to be seen how “selective” they may be
once reassessed properly with a classifier). Finally, though, let us suppose
for the sake of argument that Kanwisher is correct. Suppose that there is
a very small area (or many small areas) of the brain, maybe even the size
of a single neuron, that detects faces and only faces. But then in the final
analysis, why would there be? What exactly was the plausible computa-
tional mechanism that could make any sense of such an unlikely represen-
tation for something as complex and important as recognizing someone’s
face?
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