
www.elsevier.com/locate/ynimg

NeuroImage 23 (2004) 156–166
Combinatorial codes in ventral temporal lobe for object recognition:

Haxby (2001) revisited: is there a ‘‘face’’ area?
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Haxby et al. [Science 293 (2001) 2425] recently argued that category-

related responses in the ventral temporal (VT) lobe during visual object

identification were overlapping and distributed in topography. This

observation contrasts with prevailing views that object codes are focal

and localized to specific areas such as the fusiform and para-

hippocampal gyri. We provide a critical test of Haxby’s hypothesis

using a neural network (NN) classifier that can detect more general

topographic representations and achieves 83% correct generalization

performance on patterns of voxel responses in out-of-sample tests.

Using voxel-wise sensitivity analysis we show that substantially the

same VT lobe voxels contribute to the classification of all object

categories, suggesting the code is combinatorial. Moreover, we found

no evidence for local single category representations. The neural

network representations of the voxel codes were sensitive to both

category and superordinate level features that were only available

implicitly in the object categories.
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Introduction

How does the brain encode and represent objects? Functional

brain imaging has revealed that the human ventral object vision

pathway has a complex functional architecture. Different categories

of objects evoke different patterns of response in these cortices.

Based on standard methods for analyzing and interpreting functional

brain imaging results, these patterns are usually described in terms of

the locations of regions that respond more strongly to one category,

for example, faces, than to all others (Aguirre et al., 1998; Downing

et al., 2001; Epstein and Kanwisher, 1998; Hasson et al., 2003; Ishai

et al., 1999; Kanwisher et al., 1997; McCarthy et al., 1997). In

previous work, however, Haxby et al. (2001) showed that category-

related information is also carried by weaker responses in these

patterns of response and proposed that strong and weak responses

may all play an integral role in the representation of objects. Thus,

the representations for multiple categories overlap because a strong
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response to one category and intermediate or weak responses to

other categories in the same piece of cortex are all parts of the

representations for these categories. Such representations have an

essentially unlimited carrying capacity by virtue of the number of

combinatorial possibilities. By contrast, representations based on

localized processors or modules, identified by maximal response to

the objects for which they are specialized, are limited by the number

of category-dedicated regions that can fit into a cortical space.

The similarity method of Haxby et al. (2001) was intended as a

demonstration of a concept, designed to attempt to measure

category-related, distributed patterns of response, but it was ineffi-

cient and insensitive to the range of possible distributed coding

possibilities. It and other analyses (Spiridon and Kanwisher, 2002)

have also confused category identification with feature (cortical

response) sensitivity making it unlikely that functional areas could

be uniquely identified (cf. Bartels and Zeki, 2004). Others have

since applied various multivariate methods for analyzing distributed

patterns of response in functional magnetic resonance imaging

(fMRI) data sets, such as linear discriminant analysis (Carlson et

al., 2003) and support vector machines (Cox and Savoy, 2003). All

of these methods examine a form of information in fMRI data that is

overlooked in standard methods of analysis (Friston et al., 1994).

The usual statistical methods analyze the temporal course of

response in each voxel independently of all other voxels then search

for clusters of voxels with similar responses. By contrast, these

multivariate methods explicitly analyze how the response varies

across clusters of voxels and how these patterns of response, or

landscapes, change with cognitive or perceptual state (see Haxby, in

press). These types of methods could be used to detect representa-

tions that involve specific local codes that index a compact region

(cf. Fodor, 1983), perhaps varying in shape or size, or for proba-

bilistic maps that vary in intensity over the region in a distributed

and possibly overlapping way. There are actually four logical

possibilities for such coding schemes: (1) spatially local or compact

codes that indicate the presence or absence of a type of object, (2)

spatially local or compact codes that also indicate ‘‘likelihood’’ of

the object type, (3) distributed codes that are non-overlapping and

hence act as a potential local code but are distributed through the

region in a unique pattern (these types of codes could also vary in

intensity), finally, (4) distributed codes that are either partially or

completely overlapping and vary in intensity. The case of com-

pletely overlapping distributed code is often called a combinatorial
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code. They only depend on the pattern of activity in which each

subregion of the landscape responds in a continuous way to create

an object code. Activity in a subregion is therefore more similar to

the kind of coding such as specific values that a variable can take

on, rather than a likelihood or intensity measure that could indicate

strength of a response in a specific patch or even set of patches.

The method of Haxby et al. (2001) measured the similarity of a

pattern of response to a template, defined individually for each

subject, using a correlation coefficient as the index of similarity.

Briefly, the data are divided into statistically independent halves,

the patterns of response in each half of the data to each category are

calculated, and correlations between these patterns are used as

indices of the replicability of the pattern of response to each

category (within-category correlations) and the confusability of

patterns of response to different categories (between-category

correlations). This correlation method is a test of whether a

replicable pattern of response in one experimental condition exists

that is significantly different from the pattern of response in

another experimental condition. To test whether the information

carried by a pattern of response resided only in the cortex that

responded maximally to one category, the patterns of response to

two categories were compared with the cortex that responded

maximally to either category excluded from the analysis.

Previous methods of topographic pattern analysis, however,

have not provided an unbiased test of whether the patterns of

response are most consistent with a distributed or a localist code for

the representation of faces and objects. We decided, therefore, to

reanalyze data from the experiment of Haxby et al. (2001) with a

neural net (NN) classifier that could detect either a localized or a

distributed code with no initial bias toward either. Neural networks

are nonlinear response functions that consist of ‘‘nodes’’, which

possess both an activation function and an input function. An input

function defines the integration of inputs to the node, typically this

function is a weighted average (dot product) over the input values

(in this case voxel values). An activation function or output function

defines the transformation of net input through the integration

function to ‘‘rate of firing’’ function. Often, such a function is

sigmoidal in nature, such as a logistic function, such low net input is

transformed to low response rates and high net input is transformed

to high response rates. These outputs, which typically vary between

zero and one, can also be used to indicate the ‘‘likelihood’’ of a

given input vector. Feed-forward neural networks often have layers

of nodes with intermediate nodes that are known to make them

universal approximators (Hanson and Burr, 1990; Hornik et al.,

1989). Because of their broad approximation powers, NNs have the

ability to detect locally contiguous inputs, ‘‘patches’’, that are

consistent across training examples or widely dispersed inputs that

may have no obvious spatially contiguity.

In addition to providing an unbiased comparison of distributed

versus localist models for category-related patterns of response, NN

classifiers also offer a more general method in detecting topograph-

ic patterns than the correlation method. Because the method of

Haxby et al. used correlation as the measure of pattern similarity, the

weight given to a single voxel is based on the deviation of the

response in that voxel from the mean response across voxels rather

than on the discriminating power of that voxel. By contrast, NN

classifiers adjust the weight assigned to each voxel to maximize

discriminatory power. Therefore, NN classifiers have the potential

to detect the more exact form of the topographic pattern.

NN classifiers also address another shortcoming of the corre-

lation method, namely the uncertainty about the precise extent of
response pattern overlap. Haxby et al. showed that the pattern of

response to an object category was highly specific to that

category even when the analysis was restricted to cortex that

responded maximally to other object categories. Also apparent

from the correlation analysis were extensive negative correlations

between categories, suggesting a potential network of associations

between object categories that were primarily inverse relation-

ships in activation, ones that could form an associative basis.

These results suggested that information about multiple categories

is distributed in overlapping representations, but it is not an

exhaustive test of whether each voxel contributes information to

the representation of all categories. It is possible that no maximal

responses in a piece of cortex only carry information about one or

two categories in addition to the category that elicits the maximal

response. Such a representational scheme, therefore, would be

localized to scattered, small cortical patches that have some

degree of category-specificity. With NN classifiers, we can apply

a sensitivity analysis to determine whether each individual voxel

contributed to the classifier for each category and, thus, make an

exact quantitative estimate of the extent of response pattern

overlap. This kind of analysis adds noise to the input voxel after

training the NN to optimal generalization performance. As noise

increases for each specific voxel input, the classification error of

the trained NN is monitored for significant increases in error

given small perturbations of noise indicating that that voxel is

contributing to the overall classification performance. In this way,

each voxel can be ‘‘queried’’ as to its contribution to the specific

object identity.

In the present research, we therefore ask two basic questions:

whether we can show improvement in out-of-sample generalization

and further can we identify the object code in temporal lobe more

precisely? Specifically, the kinds of codes that we investigate in

this paper are a special case of more general topographic codes;

ones in which differential intensities in some fixed spatial patterns

code for objects; similar to a piano where the same set of keys are

played but with different amplitude modulation; thus producing

unique output with the same keys. From a computational point of

view, this might be the simplest type of code to implement that is

efficient, high capacity, and rapidly extensible. In the next sections,

we examine this specific coding hypothesis and provide results for

the Neural Network Classifiers.
Methods

Data acquisition

The data consisted of 64 slices 64 � 40 BOLD collected from a

GE 3T (repetition time = 2500 ms, forty 3.5-mm-thick sagittal

images, field of view = 24 cm, echo time = 30 ms, flip angle =

90j). We used 7–10 slices from this set and used Haxby’s feature

masks that he had used for his correlations. Haxby had done

feature selection using thresholded high variance voxels that

created slice masks for 7–10 slices with 5–150 voxels per slice

(500–600 voxels per volume) depending on the subject.

Experimental procedures (Haxby’s original procedure from

Science 2001)

Patterns of neural response were measured with functional

magnetic resonance imaging (fMRI) in six subjects while they
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viewed pictures of faces, cats, five categories of manmade objects

(houses, chairs, scissors, shoes, and bottles), and control, non-sense

images. Stimuli were gray-scale images of faces, house, cats,

bottles, scissors, shoes, chair, and nonsense random patterns. The

categories were chosen so that all stimuli from a given category

would have the same base level name. Control nonsense patterns

were phase-scramble images of the intact objects. Twelve time

series were obtained in each subject. Each time series was begun

and ended with 12-s rests and contained eight stimulus blocks of

24-s duration, one for each category, separated by 12-s interval of

rest. Stimuli were presented for 500 ms with an interstimulus

interval of 1500 ms. Repetitions of meaningful stimuli were

pictures of the same face or object photographed from different

angles. Stimuli for each meaningful category were four images

each of 12 different exemplars. Volumes of interest (VOIs) were

drawn on high-resolution structural images to identify ventral

temporal (VT), lateral temporal, and ventrolateral occipital cortex.

The VOI for ventral temporal cortex extended from 70 to 20 mm

posterior to the anterior commissure in Talairach brain atlas

coordinates and consisted of the lingual, parahippocampal, fusi-

form, and inferior temporal gyri. The VOI for lateral temporal

cortex also extended from 70 to 20 mm posterior to the anterior

gyrus and both banks of the superior temporal sulcus. The VOI for

ventrolateral occipital cortex extended from the occipital pole to 70

mm posterior to the anterior commissure and consisted of the

lingual, fusiform, inferior occipital, and middle occipital gyri.

Voxels within these VOIs that were significantly object-selective

were used for the analysis. To identify the object-selective voxels,

Haxby et al. (2001) used an eight-regressor model. The first

regressor was the contrast between stimulus blocks and rest. The

remaining seven regressors modeled the response to each mean-

ingful category.

Bootstrap

Out-of-sample generalization refers to a test that uses mutually

exclusive data sets that provide an unbiased test of a classifier. Split

half tests are often used for out-of-sample tests; in this case, the

out-of-sample test is based on a held out half of the whole sample

while the classifier is trained on one of the halves and the second

(‘‘unseen’’) half is used for testing. Split half out-of-sample tests

are inefficient and we will use throughout these analysis an N � 1

bootstrap test, which efficiently uses all the data by training on N �
1 part of the data and testing on the single left out case and then

replace that single sample and remove another independent sample

for testing.

Neural network settings (softmax and cross entropy)

For each subject, we created a 10-hidden node, eight-way

multi-class NN classifier. We used the hyperbolic tangent activa-

tion transfer function for its hidden nodes, that is,

hj ¼
expðaHj Þ � expð�aHj Þ
expðaHj Þ þ expð�aHj Þ

where aHj ¼
X
i

xiwij.

Here, xi was the activity of voxel i. The activations of the

hidden nodes were then fed forwarded to the mutually exclusive
output nodes, where we used the softmax function (also known as a

smooth version of winner-take-all activation function) for obtain-

ing their activations:

Ok ¼
expðaOk ÞX
m

expðaOmÞ

where aOk ¼
X
j

hjwjk .

This softmax function normalizes outputs (i.e., output lies

between 0 and 1 and sum up to unity). The error function for

our NN classifier was the cross entropy function or:

E ¼ �
XN
n¼1

XK
k¼1

t nk ln
On

k

tnk

� �

Scaled conjugate gradient

The scaled conjugate gradient (SCG) method is a variant of a

conjugate gradient method that uses Levenberg–Marquardt ap-

proach for finding appropriate step size (Moller, 1993). Instead of

using computation-intensive line search procedure, SCG uses

approximated Hessian matrix (multiplied by the direction vector)

to scale the step size aj. To find the appropriate step size, only

Hessian matrix multiplied by a conjugate direction vector d is need.

This Hessian matrix product can be approximately computed rather

efficiently for the multilayer perceptrons by using central differ-

ences (Bishop, 1995). However, to maintain definiteness of the

Hessian, a scalar k is included in the computation:

sj ¼
f Vðwj þ ejdj

Þ � f VðwjÞ
ej

þ kJdj

where e is a small number.

The step size for SCP is then obtained by

aj ¼ �dT
j f VðwjÞ

dT
j � sj þ kjNdjN

2
:

If the comparison parameter given by

Dj ¼
2fEðwjÞ � Eðwj þ ajdjÞg

ajd
T
j gj

results in bigger than 0, then new conjugate direction and weight

are obtained, namely,

wjþ1 ¼ wj þ ajdj

djþ1 ¼ gjþ1 þ bjdj

where bj ¼
Agjþ1A� gjþ1gj

dT
j gj

.

Here, g is a gradient vector.

Sensitivity analysis

Each input to the NN represented a particular voxel. Each

input line was perturbed with random noise by adding a
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sufficient Gaussian source to each voxel until it reached threshold

at the hidden layer, thus producing a response at the output

category layer. Due to the normal operation of the Neural

Network that typically had 300–600 active weighted inputs,

the variance of the Gaussian noise source had to be increased

to a scalar value (order 100) so that a single input could produce

a significant response in the NN. This value was fixed for all

voxels and specific to each subject. Output errors (responding

‘‘X’’j given input was ‘‘Y’’) that exceeded 30% overall error

were considered significant given they were near the median of

the sensitivity distributions (see Fig. 1).
Results

Voxel or feature properties

As described above in the Methods section, Haxby defined

voxel masks in the ventral temporal area that resulted in approx-

imately 300–600 voxels (features) depending on each subject. We

converted the voxel intensities in these sets to z scores (demeaned

and normalized to standard deviation in each time series) and

examined their distributions. As shown in Fig. 2, we have a typical

subject’s frequency distribution over the voxel set. For all six

subjects, we found no evidence of significant modes or obvious

mixtures in the underlying distribution, and despite a strong skew

in all distributions, they appeared single peaked and smooth.
Fig. 1. Sensitivity distributions for Subject 4 across all categ
Similarly, a principle components analysis (PCA) of the voxel

set showed strong first order influence (30%) with a long and

shallow tail indicating that the last nine components of the 10

uniformly extracted a majority of the variance in voxel space

(93%). This type of PCA property can often suggest that there is

nonlinear structure available to exploit.

Linear classifiers

The voxel features were submitted to various linear classifier

methods and complete cross-validation was done for N � 1

(Jackknife) and N � 2 to assess value and stability of the out of

sample generalization (performed over blocks; see Methods or

cross-validation section). Haxby had defined a type of ‘‘proto-

type’’ classifier based on average spatial pattern derived from

independent split half samples (N � 6). The highest correlation

over all average patterns for ‘‘face’’, ‘‘house’’, and so forth, was

used to classify the other split half sample to one of the eight

categories. We replicated Haxby’s correlation method using raw

voxels (as opposed to Beta weights in order to be comparable to

the classifiers discussed next; but still selected voxels using his

original Beta weight masks) and used cross-validation to deter-

mine stable out of sample performance. The Haxby correlation

method achieved 66.8% correctly classification in N � 1 (and

slightly less for N � 2). Because the number of variables in this

problem greatly exceeds the number of samples, the linear

discriminate analysis is ill-conditioned and fails to produce a
ories, the median for all distributions was 30% error.



Fig. 2. Distributions of voxel intensities in the ‘‘Haxby Masks’’ from three typical subjects.
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result. However, if one first does singular value decomposition

(SVD) on the original variables and uses these derived variables to

compute within group variance, the LDA of that new feature space

achieves as high as 78% in N � 1 bootstrap. This type of data

compression before classification is similar in operation to non-

linear classifiers, such as neural networks (NN) that attempt to

optimize lower dimensional projections of the original variables as

they learn to classify.

Neural networks

We used simple feed-forward neural networks that are known to

have general classification capabilities. We considered various

architectures (modular, multiple layers, etc.), but in preliminary

tests with a smaller data set, were able to find good generalization

with a single layer network but not significant improvements in

out-of-sample generalization with more complex architectures or

variations in weight estimation procedures. Weight parameters in

all networks were found using scaled conjugate gradient search

(Moller, 1993), also known to be efficient in relatively large search

spaces. N � 1 bootstrap (in this case we used separate blocks) was

used to evaluate the classifier, which allowed for 88 (i.e., 11

exemplars � 8 categories) in-sample training and eight (i.e., 1

exemplar � 8 categories) out-of-sample opportunities.
Table 1

Nonexclusive, partial list of the neural network classifier configurations impleme

Error metric Output function Gradient estim

SSE, MSE Logistic BP

ABSOLUTE Logistic BP w/Momen

SSE, MSE Linear SCG

Cross-entropy SOFTMAX SCG

Cross-entropy SOFTMAX SCG

Abbreviations: SSE, sum of squared error; MSE, mean squared error; BP, back p
To minimize voxel pattern overlap due to the extended time

scale of the hemodynamic response, we used whole blocks as

exemplars for the out-of-transfer transfer point (seven scans). We

also created a ‘‘REST’’ category and in preliminary analysis

trained the networks with REST voxels (from the same Haxby

voxel mask) to provide the classifier a background baseline for

contrast against the category voxel patterns. In subsequent tests, in

fact, REST was not required for significant transfer results and

hence was not included in the final analysis (in this case, we only

used the original Haxby mask voxels). Also somewhat surprising

was the critical nature of the choice of the output function with the

error metric. Shown in Table 1 are some of the various output

functions and parallel error metrics we used with and without the

REST condition. In fact, only one of these many conditions

showed significant transfer for ALL subjects (we could achieve

reasonable transfer for Subject 2 for most output functions or error

metrics, but this did not generalize across all subjects). Weighting

relative category errors using softmax and measuring the similarity

of the distribution of errors as in a cross-entropy measure provided

significantly stronger generalization than any other case (with

scaled conjugate gradient (SCG), see supplemental material for

more detail on this error metrics and learning functions). Although

we will discuss this in a later section, apparently the voxel

contributions required weighting against a background of other,
nted and tested in the present study

ate Input transformation Background

�1,1 Rest

tum Min–max Rest

Z-norm, scan-wise No rest

Means No rest

Z-norm. scan-wise No rest

ropagation; SCG, scaled conjugate gradient.



Fig. 3. Classification and N�1 bootstrap generalization rates for all categories averaged for all subjects. Note that overall category out-of-sample generalization

is 82.5%.
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potentially very subtle changes in voxels associated with other

category judgments. Shown in Fig. 3 are the mean bar graphs for

transfer averaged for all subjects in each of the eight categories.

Overall, we are accounting for a mean of 99.5% in training and

mean of 82.5% in transfer. The range of transfer is from a mean

value of 92% for face’’ and ‘‘house’’ tokens to 63% for ‘‘scissor’’

tokens with other tokens falling in between these cases. Model
Fig. 4. Model selection results indicating that between
selection results shown in Fig. 4 tested transfer at seven different

hidden unit values finding the best case to be 10 hidden units,

similar to the what the PCA indicated previously about the

structure of the voxel intensity. Consequently, all results reported

were done with neural network classifiers of 10 hidden units. We

should note that this does not imply the network was using

principle components for projections. In fact, as it will be shown
9 and 15 hidden units are best for classification.
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below that combinations of hidden unit patterns were critical for

identification (for example, see also Japkowicz et al., 2000).

Hidden unit analysis

The trained neural network’s hidden unit states can be analyzed

to indicate some aspects of the underlying representation that

support the classifier (Hanson and Burr, 1990). Submitting the

hidden unit activities over all exemplar scans to an agglomerative

clustering analysis shows the distances between exemplars and

categories as represented in hidden unit space. In Fig. 5 below, we

show the result of such a cluster analysis on 10 hidden units from

the trained networks. From the dendrogram, it is clear that the

network has produced a 10-dimensional embedding of the original

exemplars as distinct categories. From left to right, the hidden

space shows ‘‘faces’’, ‘‘cats’’, ‘‘houses’’, and so forth, and

apparently makes at the next level of the dendrogram a distinction

between the group ‘‘faces’’ and ‘‘cats’’ and all other categories.

This type of ‘‘animate or inanimate’’ distinction is evidence—for

the first time—that fMRI signals could encode an implicit seman-

tic distinction based only on learning categories from specific

exemplars sampled from those categories. As we see below, this

type of distinction is apparently part of a larger code that indexes a

specific exemplar, while at the same time coding for the entire

category.

Sensitivity analysis

Although it is possible that all feature or voxels are used in the

classifier for it to achieve its transfer results, in practice this

outcome is unlikely. All features do not have equal weight in the
Fig. 5. Cluster dendrogram showing the responses of the hidden units to all exemp

that there appears to be an ‘‘animate or inanimate’’ distinction learned from exam
analysis and as outlined earlier, several outcomes are possible.

First, as hypothesized by many in the field, there could be a

relatively local code for these object types that are segregated by

category type (e.g., ‘‘faces’’, ‘‘places’’, ‘‘body parts’’, etc.). Sec-

ond, there could be as Haxby appeared to show, a distributed code

that was relatively unique to each category type, nonetheless

completely nonlocal in its coding properties. This result contradicts

the previously discussed research apparently showing there are

specific areas of the brain with specific extent and volume, in effect

focal and volume limited, that uniquely code for specific object

types or categories. The third possibility demonstrated here is that

the codes are combinatorial in the sense that the same voxels or

features are reused in an efficient way for object type category

codes. One way to test this hypothesis is by performing the

following sensitivity analysis of the trained classifiers. To deter-

mine the contribution of each voxel to the overall classification and

generalization results, Gaussian noise of sufficient width (in this

case to scale the weight from a single voxel with a background

input of 500–600 other voxels; see Methods or Sensitivity

analysis) is added to each voxel, one at time, and the generalization

error is again recalculated for the new classifier. Noise is sampled

and added hundreds of times to get a stable estimate of the error

contribution. If the error increases significantly, this indicates the

voxel is showing a contribution to the classification performance.

If, on the other hand, increases in noise to that voxel provide little

or no significant change in classification error, then we will index it

as having little contribution in the classification performance. In

this way, we effectively assay the voxel’s classification contribu-

tion by ‘‘lesioning’’ it with the perturbing noise source. If we

threshold the voxels sensitivity at 30% change in the classification

error and plot those voxels and those voxels showing a change
lar scans. Note that each category set is represented in hidden unit space and

ples of object exemplar scans by the neural network.



Fig. 6. Sensitivity analysis in one slice containing ventral medial temporal lobe. Red voxel patterns show the voxels that had more than a 30% increase in

classification error due to noise perturbation at each voxel. Note that each subject has a slightly different pattern of sensitivity response (not shown here),

although this may be due to difference in anatomy or registration and not necessarily due to the specific visual voxel pattern shown.
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above 30% in sensitivity error (although the maximum rarely

exceeded 60% error increase and typically was around 40%), we

see in the following Fig. 6 a typical subject’s sensitivity values

plotted in a mid-level slice for all eight object categories. There are

two observations to note (not all shown): (1) intersubject variability

in terms of object coding is high, notwithstanding that the VMT

mask is relatively small, (2) the voxels that are most sensitive

across all object types within each subject are practically identical.

The overlap for all subjects (calculated within subjects) and

between category type voxels (500–600) is 88.4%.

In Table 2 below, we show the pairwise sensitivity overlap of

the significant voxels of one category with all other categories.

Note that ‘‘random’’ category has the lowest overlap with other

categories while ‘‘face’’, ‘‘house’’, and ‘‘cat’’ have the highest with

all other categories. These results suggest that there is very little

local response whatsoever for a category input.

Do any voxels show sensitivity to specific objects (house, face)?

Finally, to provide the strongest possible test of the localiza-

tion of object identity in temporal lobe, highly selective masks

were identified for the ‘‘fusiform face area’’ and the ‘‘para-

hippocampal place area’’ that also did not overlap in voxel space.

These voxels were then probed for their responses to ‘‘face’’ and

‘‘house’’ based on the sensitivities previously computed. Distri-

butions of sensitivities for all voxels and subjects were calculated

for the four possible cases of voxel mask and object sensitivity.

Specifically, we show in Fig. 7 the FACE sensitivity response

given HOUSE voxels, the HOUSE sensitivity response given

FACE voxels, the HOUSE sensitivity response given HOUSE

voxels, and finally the FACE sensitivity response given FACE

voxels. If there were any special voxel selectivity for object type,
Table 2

Overlap of voxels by category as determined from the sensitivity analysis

House Cat Bottle Scissor Shoe Chair Random

0.8885 0.9230 0.8127 0.8376 0.8829 0.8740 0.8969 Face

0.8641 0.7382 0.7717 0.8256 0.8089 0.9277 Random

0.8656 0.8991 0.9530 0.9363 0.9197 Chair

0.9665 0.9126 0.9293 0.8105 Shoe

0.9461 0.9602 0.8440 Scissor

0.9664 0.8979 Bottle

0.8812 Cat
the distributions for the matched object sensitivity and object

voxel type (Sens(X)| Vox(X)) would skew toward the right (the

rightmost column in Fig. 7) indicating higher sensitivity. For

object response sensitivities for different object voxel types (the

leftmost column in Fig. 7), we would also expect the distributions

to skew to the left (as they are doing), indicating that there is no

special response of FACE by FACE voxels, HOUSE by HOUSE,

FACE by HOUSE, or HOUSE by FACE. In the present case, all

distributions are skewed to the left and have roughly the same

range, and show the same median response to either object by

either the FFA or the PPA voxels. In effect, the distributions for

each voxel type overlap in their responses, indicating no particular

local response to object type.
Discussion

We have reanalyzed the Haxby et al. (2001) object recognition

data using feed-forward neural networks and showed significant

out-of-sample generalization performance (82.5%) on scans be-

tween blocks of stimulus trials. Networks performing a potential

compression of 50:1 of voxels to hidden units were able to correctly

classify and recognize all (672) tokens based only on individual

scans, indicating that voxel variation alone can be use to code for

objects that human subjects are visually observing. Most interes-

tingly, the sensitivity analysis of voxels showed very high overlap

of the same voxels being recruited across all object categories and

exemplars. As discussed previously, such codes are often consid-

ered combinatorial, since they take advantage of the possible

combinations of values that could arise from the same variables.

These types of codes are not uncommon in biological coding. For

example, in the context of odor coding, Malnic et al. (1999) show

that unique combinations of the same odorant receptors can code for

different odorants. In the present case, the combinatorial codes are

expressed at the voxel level in terms of millions of cells whereas

previous cases are measuring tens or dozens of cells at most. In

general, combinatorial codes are one of the most efficient that could

exist for coding a large set of responses in redundant and lossless

way. Suppose there are about 100 voxels in VMT coding for object

category. If, for example, each voxel has only a fidelity of just three

different values, the number of types that could be stored and

recognized with such a scheme is 3^100 or equivalently 10^50

(trillions and trillions; in effect an unlimited numbers of potential

object exemplar or categories as opposed to the hard bound that



Fig. 7. Distributions of sensitivities of FFA or PPA voxels to either face or house. Note the lack of right skew in any distribution, indicating no special response

of voxel to object type.
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seems to be implied by the prevailing theories of assigning cortical

space to object codes)!

How are FFA and PPA insensitivities for face and house consistent

with past research?

In Fig. 6 and especially Fig. 7, we show that there is a lack of

object specificity in the PPA (so-called ‘‘place’’ area) and the FFA
(the solaced ‘‘face’’ area). There has been considerable research in

both visual neuroscience and neuroimaging showing specificity or

responses in these specific areas of ventral temporal lobe. How can

we reconcile recent work that seems to provide evidence for

differential responses of the FFA and PPA for faces and places,

respectively (e.g., Spiridon and Kanwisher, 2002)? In the present

case, the inconsistency in the neuroimaging literature often reflects

a confusion between identification and similarity. For example,
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measures of ‘‘topographic overlap’’ used in the Haxby (2001) and

as well in the Spiridon and Kanwisher (2002) study actually

measure the similarity or distance between the prototype and target

patterns. The procedure of ranking the similarity measure to pick

the closest prototype as the category label ignores similarity of

other object types. The similarity between a set of exemplars and a

category prototype is not equivalent to the probability of identifi-

cation of that exemplar with a given category. Consider the two

following correlation patterns that may be similar to Spiridon and

Kanwisher (2002) shown in Table 3.

In each case, the FACE prototype pattern is most similar to the

target FACE stimulus and according to the Haxby (2001) method

would be labeled FACE. Unfortunately, if we take into account the

high similarity of the other possible categories, using Luce’s

Choice ratio, which constrains the similarity of the target to all

possible prototype responses:

PðCfaceÞ ¼
SimilarityðCfaceÞP
SimilarityðCijÞ

This produces the following estimated probabilities, 0.29 for

the first row and 0.71 for the second row. In other words, the first

row produces a relative probability much lower than the rank-

measure similarity that Spiridon and Kanwisher (2002) used to

determine ‘‘preference’’ of voxels (whether they selected FFA or

used temporal lobe masks) for object identification. Given that

most of the data patterns using these correlation methods look like

this first row, it is not surprising that such methods may inflate the

probability of identification by ignoring nearby category responses.

The neural network in the present work in fact, used SOFTMAX,

which is a version of Luce’s Choice ratio. The second confusion

involves the difference between identification and sensitivity. As

shown in this paper, it may be possible to correctly classify voxel

intensities to a given category label; however, this does not also

mean that all voxels or features are utilized for the classification.

VOI selection can only confirm the category label that the VOI

maximally responds to without at the same time indicating what

other VOIs not selected or what part of the VOI chosen actually is

most responsible for the classification success. Bartels and Zeki

(2004) recently argued a similar view concerning functional

identification ‘‘we should emphasize, however that the results

using neuroimaging can never be used to show the noninvolvement

of areas, and that positive results are only of a correlational

nature.’’ But in fact, using sensitivity measures through model-

based classifiers as shown here can in fact provide causal evidence

for area involvement and using more comprehensive masks can

indeed show the noninvolvement of areas.

Categorization, distributed representations, and the basic level

In many past neuroimaging studies, object, category, and

exemplar are often used interchangeably. However, it is important
Table 3

Hypothetical correlation patterns resembling Spiridon and Kanwisher

(2002)

Face House Cat Shoe

Target pattern 0.95 0.82 0.75 0.65

Target pattern 0.20 0.01 0.02 0.05
to make a distinction between category (object type) and exemplar

(object token) because responses in the temporal lobe are not

directly dependent on the ‘‘face’’ or ‘‘chair’’ category but on

exemplars drawn from these categories. More critically, it may

be important to distinguish between different levels of reference in

a category hierarchy (Rosch and Mervis, 1975). ‘‘Face’’ for

example is part of the human head that is part of the human body

that in turn is a type organic form, and so on. Given the usage in

this literature, it is often hard tell which level of reference is being

invoked. Consider ‘‘face’’ as a category, despite the inability for

prosopagnosics in recognizing a particular face exemplar (‘‘is this

George Bush?’’), they also do not have problems discriminating a

face from a chair. In this case, ‘‘face’’ may be at a more subordinate

level (in terms of a category hierarchy) than ‘‘chair’’, in that

subjects have more ‘‘expertise’’ with the face (cf. Gauthier et al.,

2000) category as opposed to chair. Hence a particular face

exemplar may be more similar to the knowledge that a subject

has with the chair in their living room they often sit in, than a

particular kind of chair.

In any case, the kind of encoding strategy that the present result

suggests is available in temporal lobe is consistent with this type of

hierarchical representation. Assuming a configural feature encod-

ing of categories and exemplars from categories, a combinatorial

code can allow a mixture of general and specific features. If a

stimulus varies in its position in a category knowledge hierarchy,

we would predict that the density of the code would covary with

the level in the hierarchy, less dense distributed activity reflecting

more general category reference. In fact, it is hard to see how the

structure of category knowledge could be represented in localist

accounts of categories like ‘‘face’’ and ‘‘house’’. Given the

inability of these kinds of accounts to deal with fundamental

properties of category structure, it calls into question the proposal

of a specific area in the brain that could be considered a ‘‘face’’

area, for example.

Distributed representation accounts of category knowledge are

consistent with the observations of temporal lobe representation in

this paper. Connectionist models, for example (Rumelhart et al.,

1986), provide a theoretical account of present results. Networks of

neurons or areas could be activated to signal the presence or

absence of a particular category or exemplar from a category.

What is particularly intriguing is the possibility that in our analysis

we are observing knowledge representation at the voxel level in a

distributed computational network. Experiments that focus on the

variation of activity in the temporal lobe as a function of category

structure and level of reference should help determine the aspects

of this type of representational network.

Although at first glance, it may make sense to try to assign

specific functions to specific structures in the brain, it may be that

the brain is not actually organized in such a way to cooperate with

this type of analysis. The history of object recognition and

category learning focuses on lesions, single cell measurements,

and more recently, neuroimaging. Only in the last few years have

researchers asked critical questions about coding at this high-level

system description, while most have continued in the agenda of

recognizing one-to-one structure and function. Our classifier was

completely agnostic to the coding and was only required to

produce a good classification based on some voxel, voxels, or

even as it did in this case, voxel pattern. Although such codes are

difficult to discover, it makes it particularly hard when the

prevailing methods, as they are in neuroimaging, actually bias

the researcher against finding distributed patterns. The signal
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detection paradigm, as it is normatively practiced in neuroimag-

ing, tends to lead to finding specific voxels at specific locations,

although there had been work on using the general linear model

(GLM) for detecting distributed patterns (Friston et al., 1994), and

in using multivariate pattern recognition methods (Cox and Savoy,

2003), there has been little mainstream interest, use, or acceptance

of these types of analysis. On a more hopeful note, however, there

has been recent proposals about interpreting fMRI data as neural

distributed function (Shaw et al., 2003). McIntosh (2000), in

particular, discusses the response of brain areas dependent on a

type of ‘‘neural context’’ and has been a proponent for multivar-

iate spatial analysis for sometime.

Several new directions arise from the current results and

analysis. First, what is the nature of the voxel combinatorial

features themselves: what is the nature of the ‘‘code-book’’? One

possible way to answer this question is to train networks to classify

voxels to arbitrary feature elements (that exhaustively cover the

original stimulus space), and then to query the voxels using

sensitivity analysis to see what codes are most productive in

classification error with which specific voxel regions. A second

kind of analysis asks the question of how nonregionally distributed

are the codes? Clearly, these kinds of inquiries and the present

analysis tend toward a picture of brain imaging analysis as better

served with distributed and combinatorial tools (like Neural Net-

works), rather than the dominant analysis that tacitly assumes brain

function can be discovered through homogenous, unimodal signal

detection methods.
Acknowledgments

This research was supported by a McDonnell Foundation Grant

to S. Hanson and NSF ITR Grant EIA-0205178. We wish to thank

Maggie Shiffrar and Catherine Hanson for providing feedback on

earlier versions of this paper.
References

Aguirre, G.K., Zarahn, E., D’Esposito, M., 1998. An area within human

ventral cortex sensitive to ‘‘building’’ stimuli: evidence and implica-

tions. Neuron 21, 373–383.

Bartels, A., Zeki, S., 2004. Functional brain mapping during free viewing

of natural scenes. Hum. Brain Mapp. 21, 75–85.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford

University Press, New York.

Carlson, T.A., Schrater, P., He, S., 2003. Pattern of activity in the categor-

ical representations of objects. J. Cogn. Neurosci. 15, 704–717.

Cox, D.D., Savoy, R.L., 2003. Functional magnetic resonance imaging

(fMRI) ‘‘brain reading’’: detecting and classifying distributed patterns

of fMRI activity in human visual cortex. NeuroImage 19, 261–270.
Downing, P., Jiang, Y., Shuman, M., Kanwisher, N., 2001. A cortical

area selective for visual processing of the human body. Science 293,

2470–2473.

Epstein, R., Kanwisher, N., 1998. A cortical representation of the local

visual environment. Nature 392, 598–601.

Fodor, J., 1983. The Modularity of Mind, MIT Press, Cambridge.

Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., Evans,

A.C., 1994. Assessing the significance of focal activations using their

spatial extent. Hum. Brain Mapp. 1, 214–220.

Gauthier, I., Skudlarski, P., Gore, J.C., Anderson, A.W., 2000. Expertise for

cars and birds recruits brain areas involved in face recognition. Nat.

Neurosci. 3 (2), 191–197.

Hanson, S.J., Burr, D.J., 1990. What connectionist models learn: toward a

theory of representation in connectionist networks. Behav. Brain Sci.

13, 471–518.

Hasson, U., Avidan, G., Deouell, L., Bentin, S., Malach, R., 2003. Face-

selective activation in a congenital prosopagnosic subject. J. Cogn.

Neurosci. 15, 419–431.

Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini,

P., 2001. Distributed and overlapping representations of faces and

objects in ventral temporal cortex. Science 293, 2425–2430.

Haxby, J.V., Analysis of topographically organized patterns of response in

FMRI data: distributed representations of objects ventral temporal cor-

tex. In: Kanwisher N. and Duncan J. (Eds.), Functional Neuroimaging

of Visual Cognition: Attention and Performance XX. Oxford Univ.

Press. In press.

Hornik, K., Stinchocombe, M., White, H., 1989. Multilayer feedforward

network are universal approximators. Neural Netw. 2, 359–366.

Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L., Haxby, J.V., 1999.

Distributed Representation of Objects in the Human Ventral Visual

Pathway. Proc. Natl. Acad. Sci. USA 96 (16), 9379–9384.

Japkowicz, N., Hanson, S.J., Gluck, M., 2000. Nonlinear autoassociation is

not equivalent to PCA. Neural Comput. 12, 531–545.

Kanwisher, K., McDermott, J., Chun, M.M., 1997. The fusiform face area:

a module in human extrastriate cortex specialized for face perception.

J. Neurosci. 17, 4302–4311.

Malnic, B., Hirono, J., Sato, T., Buck, L.B., 1999. Combinatorial receptor

codes for odors. Cell 96 (5), 713–723.

McCarthy, G., Puce, A., Gore, J.C., Allison, T., 1997. Face specific pro-

cessing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610.

McIntosh, R., 2000. Towards a network theory of cognition. Neural Netw.

13, 861–870.

Moller, M.F., 1993. A scaled conjugate gradient algorithm for fast super-

vised learning. Neural Netw. 6, 525–533.

Rosch, E., Mervis, C.B., 1975. Family resemblances: studies in the internal

structure of categories. Cogn. Psychol. 7, 573–605.

Rumelhart, D.E., McClelland, J.L.and the PDP Research Group, 1986.

Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, Volumes 1 and 2. MIT Press, Cambridge, MA.

Shaw, M.E., Strother, S.C., Gavrilescu, M., Podzebenko, K., Waites, A.,

Watson, J., Anderson, J., Jackson, G., Egan, G., 2003. Evaluating subject

specific preprocessing choices in multi-subject BOLD fMRI data sets

using data driven performance metrics. NeuroImage 19, 988–1001.

Spiridon, M., Kanwisher, N., 2002. How distributed is visual category

information in human occipital– temporal cortex? An fMRI study. Neu-

ron 35, 1157–1165.


	Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a face area?
	Introduction
	Methods
	Data acquisition
	Experimental procedures (Haxby's original procedure from Science 2001)
	Bootstrap
	Neural network settings (softmax and cross entropy)
	Scaled conjugate gradient
	Sensitivity analysis

	Results
	Voxel or feature properties
	Linear classifiers
	Neural networks
	Hidden unit analysis
	Sensitivity analysis
	Do any voxels show sensitivity to specific objects (house, face)?

	Discussion
	How are FFA and PPA insensitivities for face and house consistent with past research?
	Categorization, distributed representations, and the basic level

	Acknowledgments
	References


