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Table 1: Notation

Symbol  Meaning

N Number of voxels, i.e. spatial resolution of
high spatial resolution modality (FMRI)

M Number of EEG sensors, i.e. spatial resolu-
tion of low spatial resolution modality

T Number of time points of high temporal res-
olution modality (EEG)

U Number of time points of low temporal res-

olution modality (FMRI)
CLO()B
® Kronecker product, A ® B =

L, nxn ldentity matrix

I ntroduction

Fusion algorithms are employed in an attempt to construct
a spatio-temporal estimate of neuronal activity using data
gathered from multiple functional brain imaging modal-
ities. Here, the estimate is built by placing a dipole in
each voxel of the modality with highest spatial resolution,
and estimating the time course of each dipole without con-
straining dipole orientations. The solution space thus con-
sists of a matrix S of dimensionality 3N x T, which actu-
ally consists of 3 N xT matrices. Each such sub-matrix
corresponds to the projection of the dipole to one axis [1]:

S=1S.ls,s. ]".

Table 2: Forward EEG/FMR! equations. S isan N xT matrix

holding the dipol e strengths without orientation information, and

Sij = 12,58 )2

Modality Matrix  Size  Estimate
EEG E MxT E=AS
FMRI F NxU F=SB

L P Approach

General LP Problem

Using abbreviations defined in Table 2 we formulate an
initial LP problem as follows

E+Ag=E Constraints (1)
F+Ap=F (2)
5i; >0 Region 3)

C = (X||AE||1 + ﬁHAF‘ll Objective (4)
where « and 3 control the relative influence of the two
modalities.

Next we redefine each |«|, which are present in compu-
tation of C' (4) and 5;; (6), in a form suitable for LP as
shown in Appendix A. This transformation leads to a side
effect, namely minimization of the sum of absolute values
|si;|, so we need to add another term ~||.S||; to the objec-
tive function (4). This side effect could be considered a
desired result - the minimization of L; norm of the solu-
tion results in its increased sparseness.

TransformationtoLP

It is required to agree on the order of how we "unfold’
any 2D array into a 1D sequence. Each unfolded matrix
X is presented as a vector X and it is decomposed row-
wise - rows compose unfolded matrix when taken sequen-
tially. So for S 3N xT" matrix, which is the argument of
optimization we want to obtain, we get vector S 3NT x 1
where the order of dimensions growth within the vector
ist — sensor — orientation(axis), so time is the fastest
growing dimension.

EEG Equation in LP form

We can represent (1) in a form suitable for LP using the
Kronecker product

(A®Ir)S=E )

where I is the identity matrix of size Z x Z.



FMRI Equation in LP form

First we need to encode the definition of S into an LP
constraint matrix using an approximation described in Ap-
pendix A,

S = 1U(ISal, ISy, IS:1), (6)
where [(-) is an LP approximation of the [5 norm.

In a similar to (5) way we represent the product SB in a
form suitable for LP

F = (Iy ®B")S (7)

Final LP form

Finally we group all the constraints and the objective func-
tion together into an extended LP canonical form,

(ARI7)S+Ag=E 8)

(Ir ®BT)S+ Ap =F (9)

S —1(ISl,ISyl,IS:)) =0 (10)
S>0 (11)

C = of|Ag[l1 + Bl|Ar[[1 + 151 (12)

Simulations

Data

To check the method artificial data was created. Brain
volume is simulated as a half-sphere 9 voxels in diame-
ter, which gives us 132 voxels to be considered. A simple
spherical model was used to generate a gain matrix for 11
EEG sensors distributed across the half-sphere surface. We
generated a random activation map S consisting of 5 voxels
firing within a 600ms interval after ¢t,=2 sec from the be-
ginning of the timecourse (1 voxel at 0Oms, 200ms, 400ms,
and 2 voxels at 600ms after ¢y) with the same amplitude
but in different locations and random orientation. Using
this map, clean EEG and FMRI were constructed through
forward equations given in Table 2. EEG was sampled at
10Hz and FMRI at 1Hz.

Additive noise was used to corrupt EEG sig-
nal: Gaussian noise  with SNR=-5dB!  which
equivalently  constituted ~ %RMS=23%, where
NRMS = (opoise/max(x)) x 100% for clean
signal z. SNR for EEG was fixed across all experiments.
An FMRI signal was also corrupted by additive Gaussian
noise with variable SNR to do some noise sensitivity
analysis (for FMRI SNR 2dB = 35% %RMS).

1This value is so low due to the sparsity of the activation map - 5
activations within 16 seconds of simulation interval

Conditioning

Before analysis, both data sets (EEG F and FMRI F') and
corresponding matrices (A and B) were normalized by
the estimated noise standard deviation in order to prop-
erly scale the error terms. Then weights in error terms
were used to remove dimensionality effect by assigning
a=1/(MT)and 8 =1/(NU).

As multiple tests with different SNR levels have shown,
best estimates of activations were achieved when v =
1/(3NTog), where og is the standard deviation of the
simulated activation map. Because this was possible only
for synthetic data, a robust method to estimate ~ is our next
goal.

Results

Obtained solutions for FMRI, with a SNR of 3 dB re-
turned all 5 original activations as the 5 highest obtained
activations for duration of the experiment, with ~ 50% of
the energy spread through the rest of the volume. Lowering
the SNR to 1dB lead to stable detection of 3/5 activations.

Future Work

Constrained Orientation

It is a common practice to use an anatomical MRI to con-
strain the inverse EEG solution to gray matter dipoles with
orientation normal to the cortical surface [2]. With that as-
sumption we do not need an [» approximation to represent
S in a form suitable for LP, since the dipole magnitudes are
linearly related to the potentials at the sensors.

Another issue to address here is that each voxel can
cover area of more than one single dipole, when two or
more triangulation elements from the cortical surface re-
construction has their area covered by the same voxel. Be-
cause these regions are separated in space, their impacts
on changes in rCBF (regional cerebral blood flow) can be
linearly added under reasonable assumptions.

Experiments

Real experiments require an efficient large-scale sparse
LP solver with "warm start’. After appropriate algorithms
have been designed and implemented, experiments will be
constructed in order to obtain good subject-specific esti-
mates of HRF [3].

Discussion

Robust method for estimation of «, 8 and ~ factors is re-
quired. There is a method suggested in [4] for weighting
L, factor in estimating sparse convolution kernel, but it is
ad-hoc and very computationally demanding when dealing
with large arrays.



Conclusion

This method makes a number of simplifying assumptions
which convert the EEG/FMRI integration problem into op-
timization of a convex function, of a form amenable to ef-
ficient solution as a very sparse linear programming prob-
lem. The assumptions made in doing this are, surprisingly,
in general somewhat more robust than those generally used
to cast EEG/FMRI integration as optimization of a non-
convex function not amenable to efficient global optimiza-
tion. This is because the L; norm used here corresponds to
a more robust statistical estimator than the L, norm gen-
erally used. For this reason, even though this technique
results in a tractable global optimization, it is more robust
to non-Gaussian noise and outliers than approaches that
make the Gaussian noise assumption [4].

References

[1] J. C. Mosher and R. M. Leahy. Source localization
using recursively applied projected (RAP) MUSIC.
IEEE Transactions on Sgnal Processing, 47(2):332-
340, 1999.

[2] Anders M. Dale and Martin 1. Sereno. Improved local-
ization of cortical activity by combining eeg and meg
with mri cortical surface reconstruction: A linear ap-
proach. Journal of Cognitive Neuroscience, 5(2):162—
176, 1993.

[3] G.K. Aguirre, E. Zarahn, and M. D’esposito. The vari-
ability of human, bold hemodynamic responses. Neu-
rolmage, 8(4):360-369, November 1998.

[4] M.S. O’Brien, A.N. Sinclair, and S. Kramer. Recov-
ery of a sparse spike time series by /; norm deconvo-
lution. In IEEE Transactions on Signal Processing,
volume 42, pages 3353-3365, 1994.

Acknowledgements

Supported by a gift from the NEC Research Institute, Sci-
ence Foundation Ireland grant 00/P1.1/C067, NSF grant
0205178 and McDonnell Foundation grant.

A Canonical Form for LP

Above we have freely used the minimum operator in for-
mula like ¢ = min(b,c), the absolute value function
y = |z|, and other constructs not allowed in the canoni-
cal form of a linear program. In this section we describe
a general technique for reducing a system of linear equali-
ties and inequalities which include minimization of the L
norm, |-| and min(-, -) operators, along with a linear objec-
tive function, into a linear programming problem in stan-
dard canonical form.

Absolute Value

Commonly accepted way to deal with absolute value func-
tion y = |«| in LP is to represent x as a difference of two
non-negative numbers, with || as their sum. Minimization
of the sum would force one of them to become 0, with the
other corresponding to |z|:

r=at -z~ (13)
|z =2 + 2~ (14)
2t >0 (15)
x>0 (16)

while minimizing ||

Minimal Value

To obtain ¢ = min(b, ¢) we first relax it to

a < min(b, ¢), )

Inclusion of a —a term in the objective function will lead
to maximization of a thus achieving the necessary equality.
Equality (17) can be easily represented in a form suitable
for LP

a—b<0
a—c<0

Approximation of [, normin LP

The magnitude of a dipole with moment vector m =
(x,y,2) is |lm|| = /224y +22. We assume that
FMRI readings are related linearly to dipole magnitudes.
In order to fit this into an LP framework, we need a way to
approximate e = ||m/|| within an LP. Our solution is to note
that the min(-, -) and modulus | - | functions can be used
freely in a LP and then reduced to canonical form using
the transformation described below. For our method, let
{R;} be a set of rotation matrices. To approximate ||m||
we let
e; = ||R;m]||; e = mine; (18)
1
where || - ||; denotes the /; norm. These can simply be
added to the linear programming problem, enforcing the
relation e =~ ||m/||. We can increase the number of matrices
in the set to improve the accuracy of this approximation, at
the expense of computational efficiency.



