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Abstract

A mode-based clustering method is developed for identifying spatially dense clusters in brain maps. This type of clustering focuses on

identifying clusters in brain maps independent of their shape or overall variance. This can be useful for both localization in terms of

interpretation and for subsequent graphical analysis that might require more coherent or dense regions of interest as starting points. The

method automatically does signal/noise sharpening through density mode seeking. We also discuss the problem of parameter selection with

this method and propose a new method involving 2-parameter control surface, in which we show that the same cluster solution results from

tradeoff of these 2 parameters (the local density k and the radius r of the spherical kernel). We benchmark the new dense mode clustering by

using several artificially created data sets and brain imaging data sets from an event perception task by perturbing the data set with noise and

measuring three kinds of deviation from the original cluster solution. We present benchmark results that demonstrate that the mode clustering

method consistently outperforms the commonly used single-linkage clustering, k means method (centroid method) and Ward’s method

(variance method).
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1. Introduction

Neuroimaging analysis usually consists of two basic

kinds of inferences; first, estimates of excursions from a

logical baseline (whether in blocks or background event-

related time points) collected within the same session, which

are often normalized as a common statistic (z or t values) by

voxel-wise time series variance; second, the locations or

regions of interest (ROIs) that constitute the presumed

bactivatedQ spatial clusters due to the subject’s response to

the stimulus task. Many procedures have been proposed and

used for inferring excursion signal and reliability, especially

in linear frameworks (e.g., General Linear Model [GLM]),

but less has been explored in identification of spatial

structure, extent or shape of the ROIs. The majority of the

clustering methods in neuroimaging rely on detecting the

largest local maximum in the statistic map and then doing

nearest-neighbor (often using Euclidean metrics) search to

identify cluster membership. Clusters are typically thresh-

olded with the longest link difference between single-link
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membership sets in a hierarchical cluster history, hence

often referred to as bsingle linkage clusteringQ in the

statistical taxonomy literature [1,2]. Other methods have

been proposed and used with neuroimaging data, including

k means clustering [3], minimum variance methods (e.g.,

Ward’s [4]), probabilistic kernel methods (so-called Fuzzy

clustering [5]) as well as self-organizing elastic maps

(SOMs) and neural networks (Kohonen [6]), but none of

these methods have tended to enter into general usage, nor

do they seem to provide a consensus on what should be

considered normative localization in brain maps. Perhaps

the closest method to what we will be proposing here and

reviewing are the SOMs that Kohonen [7] and others

introduced into the neural network literature during the mid

1980s. These methods are, in fact, mode-seeking algorithms

as well and represent simply a different framework for

introducing concepts such a kernel function, distance metric

and group membership rules. The most common methods

used in neuroimaging have been focused on the simplest

and most computationally efficient algorithms but not

necessarily ones that would be best for clustering 3D spatial

densities. Consequently, this has led to methods such as

single linkage or bconnected componentsQ (see below) to

appear in most neuroimaging data analysis packages [AFNI
aging 25 (2007) 1249–1262
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[8], SPM, [9]; VoxBo (www.voxbo.org), FSL (FMRIB

Software Library, www.fmrib.ox.ac.uk/fsl) [10] and BV

(www.brainvoyager.com)] as a default due to the fact that

they are simple to implement and fast. Unfortunately, these

methods are also well known in the statistical clustering

literature to be fraught with most difficulties in terms of

stability, classification error (in known targets) and density

estimation. In this article, we will propose a new class of

clustering methods which, in contrast to the commonly used

bsingle-linkageQ methods, explicitly searches for density in

the spatial brain maps. These methods are based on the

assumption that activation in brain maps is fundamentally

based on spatial contiguity and spatial variance, and

although this assumption is unlikely to be universally true,

it must account for much of the neural activity that is

expressed in the hemodynamics during mental activity. We

are also assuming that spatial clustering should generally

occur in the statistical parametric map where spatial

structures may be emerging, which require cognitive or

perceptual interpretation. This, of course, is a starting point

that is arbitrary and could be substituted with any

preprocessing that results in some initial signal/noise

increase; this could include classifiers [11] or blind or

semiblind methods (Independent Component Analysis

[ICA], Principle Component Analysis [PCA], wavelet,

etc.) that produce differential coefficients that can be

associated with voxels. Still, another motivation for

developing new spatial clustering methods is to create

semiautomatic methods for detecting ROIs that might be

candidates for graphical analysis and causal modeling

approaches that have become popular in recent years

[12,13]; without spatially dense ROIs, the resultant

extracted time series are likely to be either incoherent or

misspecified, representing neither a well-defined ROI or

interactivity with other ROIs. In what follows, we provide a

context for our multivariate clustering method as it relates to

the general field of numerical taxonomy and how it relates

to functional magnetic resonance imaging (fMRI) data in

particular, in order to help frame the questions and results to

follow in a broader context.

1.1. Brief overview of clustering

Statistical clustering originated in the early 1960s with

the advent of convenient access to midsize computing

environments [14,15] (see also Ref. [2] for more historical

perspective), which encouraged implementations of new

exploratory statistical analysis approaches. By the 1970s

and 80s, a general framework appeared, which laid out the

potentially vast landscape of clustering methods. Our class

of methods falls into this framework and was first studied by

Wishart [15]. Logically, there are two kinds of clustering,

agglomerative (data merging) or divisive (data cutting), and

both of these are hierarchical in that they follow a merge

history linking clusters below or above as inclusive single-

member sets. There are also nonhierarchical types of

clustering, including seeded clustering, which specifies
parametrically the number of clusters as input (e.g., k

means) or so-called overlapping clustering methods [16], in

which members can be in more than one cluster. Within the

most general kind of clustering method, there are basically

two elements, which can be combined to produce a large

array of clustering algorithms. The first is the similarity or

dissimilarity measure that can be used between objects to be

clustered. The second is the group membership rule, which

describes the way in which new members are added to

clusters, given two or more cluster membership candidates.

In terms of similarity or distance measures, there are

potentially an infinite number of such measures as long as

they conform to the distance axioms ([17] identity,

symmetry, triangle inequality) and what is often called the

bultrametric axiom,Q expressed in the next equation:

d x; yVmax½dðx; zÞ; dðy; zÞ�gf
All hierarchical clustering, in fact, results in ultrametric

trees, often called bdendrograms,Q and allows the relative

distance to be measured between all clusters and their

members. Distance measures often used are typically part of

the Minkowski family: Euclidean (L=2), city block (L=1)

or l-Infinity. for binary features; hamming distance is often

used. In terms of group membership rules, there are three

common ones used [object x( y or z) distance to cluster u):

1. Single linkage d(x,u)=min[d ( y,u),d(z,u)]

2. Complete linkage d(x,u)=max[d ( y,u),d(z,u)]

3. Average linkage d(x,u)=(1/2)*[d ( y,u),d(z,u)]

Combining distance metrics with group membership

rules produces a large combinatory set of clustering

algorithms. If we focus on group membership rules for the

moment and fix the distance metric to be Euclidean, there

are some common observations that have been made in the

statistical clustering literature.

First, in average linkage clustering, bias can result when

clusters are not multivariate gaussian but are, in fact, more

complex cluster shapes (long spindles, bananas, etc.) or

nonconvex. Nonetheless, average linkage is resistant to

noise and can be very stable when cluster shape distribu-

tions approximate Rayleigh PDFs.

Second, complete linkage is the most conservative of the

group membership rules and will tend to miss clusters

structure and, in the worse case, create a large number of

small fractionated islands (barchipelagosQ). Finally, single
linkage is the most liberal of group membership rules and

will tend to create long spindling strings (often called

bchainingQ in that a single member ties to larger cohesive

clusters together), with no modal central tendency. If there is

no interesting density or underlying focal structures, single

linkage is probably appropriate. However, single linkage is

highly sensitive to noise, extremely unstable and cannot

locate dense regions in cluster space.

In general, all the group membership rules discussed so

far have no explicit way to detect density; rather, they are

focused on spatial distribution without further noise

http://www.voxbo.org
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http://www.brainvoyager.com
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reduction. The motivation for density-based clustering

methods is in resolving this conflict between noise filtering

and flexibility. Density-based clustering methods work by

identifying dense collections of points. The collections need

not be spherical; they could have a wide diameter in a single

dimension, which would probably be disallowed in a

variance minimizing method. Yet, the fact that density is

the criterion means that these methods are not sensitive to

sparse noise. In the early 1980s, self-organizing maps were

introduced, which are basically a special case of the general

density mode estimators introduced first in the mid to late

1960s by Wishart [15], which provides the context and

starting point for our new dense mode clustering methods.

1.2. Mode density clustering

One of the first mode density clusterers was proposed

by Wishart [15] in a paper entitled bOne Level Mode

Analysis.Q In this seminal piece of work, Wishart asserted

that bclustering methods should be able to detect and

resolve distinct data modes independently of their shape and

variance.Q To motivate this argument, we show in Fig. 1 his

original example, where star clusters are plotted in a 2D

temperature and luminosity plot showing that the cluster

structure is modal and linear in shape. Worse, the two star

groups (bdwarfsQ and bgiantsQ) intersect causing most

gaussian or minimum variance clustering to separate clusters

at the midpoint of the spatial distribution. This type of data

often is related to another distinction that is made in clustering

between parametric and nonparametric clustering. In the

former, the data are assumed to be generated from a known

density such as multivariate gaussians, and hence, the task is

to estimate the parameters of the mixture of these densities. In

the nonparametric case, clusters are assumed to be associated

with the modes of some unknown density. In Wishart’s

proposal, the goal of the nonparametric mode clusterer is to

find the modes and assign each observation to the bdomain of

attractionQ for each mode.
Fig. 1. Wishart’s problem due to H.N. Russell, showing the distribution of

star clusters (dwarfs, giants) as a function of temperature and luminosity.
In the 1D case, Wishart proposed fitting the data with a

kernel density estimator and then successively thresholding

the density, setting aside data in each bwell-separatedQ mode

until all levels had been identified. Once all modes were

found, then high-density observations previously set aside

could be clustered using single linkage, since the data were

already conditioned on being from the same mode. This

proposal had been reinvented a number of times in the past

30 years, including the ideas put forth under the term

sharpening [18]. Still another density estimation approach

recently proposed is often used for image segmentation and

is called bmean shiftQ analysis [19]. Like the Tukey and

Tukey method, bmean shiftQ is a standard density estimation

approach, which iteratively locates gradient directions in 2D

images in a given spatial scale that identifies modes; these

are subsequently pruned using some threshold heuristics,

and then clusters are identified, creating a segmentation of

pixel intensities. Where there are sharp boundaries, this

method can be very useful; however, if unit intensities are

slowly graded, the method is unlikely to be very useful.

Also, due to the gradient search method at the heart of

bmean shift,Q it does not scale well in higher dimensions.

This is in contrast with the present method, which is an

exhaustive search but in a limited set of spatial scales. Note

that in the present algorithm, we will not be choosing a scale

or bsteeringQ in scale space, but rather, we will rapidly

search a limited range of spatial scales exhaustively to

optimize a sparseness criterion. In terms of relevant neuro-

imaging methods, it is worth noting the work by Stanberry

et al. [20], which explicitly used the Tukey and Tukey

sharpening methods on the a resultant cluster tree (dendro-

gram) produced in hierarchical methods (e.g., single

linkage). Their method within the same family of the

present proposal, however, focused on temporal clustering

as opposed to spatial; they unfortunately selected single

linkage, which we will see introduces biases towards low-

density clusters and did not provide a general control

surface for their dendrogram-sharpening algorithm. In

general, we believe that Stanberry et al. were on the right

track in exploring the space of possible dense mode

algorithms similar to the earlier proposal of Wishart [15],

which we further explore with this new method. Wishart’s

methods did not gain wide acceptance at the time due to the

choice of an arbitrary cut level, which was in the user’s

control. Wishart proposed a bhierarchical mode analysisQ in
order to identify potential cut levels for the modes;

unfortunately, this involved a somewhat arbitrary and

convoluted iterative merging process that attempted to

estimate the cluster dendrogram of the kernel density

estimate, with no guarantee that the algorithm would

converge on the correct tree, except in some of the simplest

cases. Nonetheless, we find the idea of mode density

clustering in brain imaging data compelling and pursue a

generalization of the method here. Basically, we estimate

modes using a spherical kernel centered on each active

voxel and use a local voting procedure to elect bdense
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(k,r) values.
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points.Q In order to avoid potentially arbitrary threshold

problems, we exhaustively search, in a highly dense grid,

for all possible kernel radii and thresholds producing an

interpolated control surface. We further bsharpenQ the modes

by imposing a bsparsenessQ function on the control surface

and maximize it. Surprisingly, this produces a single peaked

function with effectively the same cluster solution at

multiple radii/threshold combinations only along the max-

ima. What we provide next is the detailed mode clustering

algorithm we call bdense mode clusteringQ (DMC), but

before that, we provide a relevant side discussion of spatial

vs. temporal clustering in order to further define the kind of

method we have developed.

1.3. Spatial vs. temporal clustering

Logically, there are two possible ways to cluster a voxel

position by scan time matrix, one in the spatial dimension

(e.g., x,y,z) and the other in the temporal dimension by scan

time for each voxel. For methods dependent on rank of the

matrix, such as PCA, the shortest dimension in this case

would be scan time, which is often an order of magnitude

less than the number of total voxels, even if voxels are first

thresholded as significant or bactive.Q Over whole brain, this
might still be in the range of 1000 to 10 of 1000 s of voxels,

where scan times may be more typically in the order of 100 s.

Moreover, spatial similarity may or may not be consistent

with temporal similarity. If two voxels are modulated by the

same regressor, this may occur in the same part of the brain or

very different parts of the brain. It should be obvious that

dense regions that often are taken to define functional regions

are also likely have high temporal coherence. Any temporal

similarity between voxels must be established by similarity

over spatial voxel variation, while spatial similarity is

dependent on scan time resolution variation. In any case, it

is clear there must be some feature reduction in the spatial

domain in order to establish reliable distance measures. This

can be done by starting with a z map or more sophisticated

(but possibly less interpretable) feature selection process

(e.g., ICA, PCA, etc.).

1.4. The mode clustering algorithm: DMC

The present DMC begins with any convenient-feature

map; often, a liberally thresholded z-stat map will be an

appropriate input (although arbitrary, every clustering meth-

od must start with some thresholded map; however, DMC

could, in principle, use raw input). In Fig. 2, we show the

various steps involved in the present clustering algorithm.

First, we will describe the method in terms of filtering and

density estimation, and then, we provide below the detailed

pseudocode and more formal description of the method,

which would allow replication of the method (code is also

available online: www.rumba.rutgers.edu/soft/dmc). Starting

with r values near the minimum resolution of voxels in the

map (~2–3 mm) to half the typical brain (20 mm) in steps of

.5 mm, we do an exhaustive search for each r over a sensitive

range of k values. This produces a (k,r) control surface,
which allows further optimization of density sensitive

indices. The cluster method proper begins with one set of

(k,r) values, which, in effect, places a spherical surface at

every active voxel. The voxels coincident in each spherical

region are considered to be belectorsQ for the central voxel,

and if there are at least ks present, then the central voxel is

proposed as a dense point. Voxels that are not dense points

are eroded, leaving behind a minimal set of dense points that

have mutually reinforced the estimated underlying nonpara-

metric densities. What follows next is a more formal

description of the method (we show the pseudocode in

Appendix A) that could be used to reimplement our method.

The clustering algorithm has two parameters: a threshold k

and a radius r. A point p is said to be (k,r)-dense if there are

at least k other points of distance no greater than R from p.

The algorithm consists of the following two phases:

1. The introduction phase. For each dense point p, if

there exists a cluster that contains at least one point

of distance less than R from p, then p joins that

cluster. In order to prevent any indeterminacy of

cluster introduction, we further require that, if there

are several such clusters (c1, c2,...cn) that are within

distance R from p, then all clusters (c1,c2,...cn) are

merged to form a new cluster, which includes dense

point p.

http://www.rumba.rutgers.edu/soft/dmc


Fig. 4. Control surface for typical exhaustive clustering for r and k; note the

maximum F value centered in the control surface. Each point represents a

cluster solution volume, which, along the maximum point (k,r), is highly

similar in location, shape and size.
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2. The merging phase. After the introduction phase,

there are several clusters. We perform the following

procedure until no merges are performed for each

distinct pair of clusters (ci,cj): let p and q be in ci,cj,

such that

8pV: ci; qV: cj; d p; qð ÞVd pV; qVð Þ
a¼1; nj

P
x : ci d p; xð Þ and let b¼1; nj

P
y : cj d q; yð Þ

where ni and nj are the number of elements in the clusters ci
and cj. If d( p,q)b (a+b)/2, then the clusters are merged —

we call this the bRomeo and JulietQ rule.

1.5. Romeo and Juliet merging rule

In DMC, we introduce a new cluster merging rule that is

a variant on complete linkage. In what we call the Romeo

and Juliet rule, clusters are merged when their nearest

members are closer than the average distance between all

members of each of the clusters (shown in Fig. 3). This type

of rule ensures that clusters are only merged, which tend to

increase the local density of each cluster overall ensuring

density maximization. Next, we provide a new approach to

cluster identification using the (k,r) control surface.

1.6. The control surface

1.6.1. Identifying the cluster solution

One of the dilemmas with a parametrized clusteringmethod

is resolving the question of selection of parameters. For an n

parameter method, there is an n-dimensional family of

clustering solutions. So, to justify a particular choice of

parameter value, one needs to either argue that the choice is

arbitrary (that other parameter choices would give a similar

answer) or that the choice is optimal. To argue that a choice is

optimal, it is useful to have an objective function to appraise

different solutions. For mode clustering, the objective function

we will use is the pseudo-F ratio of the total mean squared,

nearest-neighbor distance between clusters, compared to the

total variance within clusters. What makes this a pseudo-F

ratio is the choice of nearest-neighbor distance over centroid

distance. The reason to prefer nearest-neighbor distance to

centroid distance is the numerator should reflect the degree of

separation between clusters. If some clusters are very large, the

variance of the centroids will not reflect this. We can plot this

function of the radius r and the threshold k. The plot is called

the bcontrol surface.Q One of the first observations is that there
is not a single optimal solution. Instead, there is a ridge with an
Fig. 3. the Romeo and Juliet cluster merge rule. Here, the green link

represents the link between nearest neighbors of the red and blue groups.
optimal threshold for each value of r. The control surface

degenerates at the extremes, as r gets smaller than the bold

resolution or large enough for clustering to become too coarse.

In this family of solutions, the threshold increases linearly with

r3, as one might expect (if we view k/r3 as a density threshold,

each solution on the ridge has the same density). Another

observation is that reducing r tends to increase the ratiowithout

obvious improvement in the quality of the solution. In fact, any

family of solutions that run parallel to the ridge are

qualitatively very similar in appearance (see Fig. 4). Conse-

quently, use of the control surface reduces the parameter

selection issue to a 1D problem — choosing an appropriate

value of r. An appropriate value of r should reflect the Blood

Oxygenation Level Dependency (BOLD) resolution. It needs

to be in the range of nondegenerate solutions, and in the

interests of good localization, a good choice of r would be the

lowest value, which permits stable control surface behavior.

Empirically, allowing the 26 nearest neighbors works quite

well. For a 3.375�3.375�4-mm volume, the resulting radius

is 7.2 mm. When multiple subjects are used, allowing a small

margin for differences in normalization, a radius of about

8.2 mm seems to be effective. Since the choice of r is

independent of the outcome of different clustering methods, it

is only necessary to run a variety of thresholds for a single fixed

radius. This greatly reduces the amount of computing

resources required by the method.

An example of the signal/noise sharpening of DMC is

shown in the Fig. 5, which on left is a single-subject

thresholded (Pb.01 corrected) z map of bilateral finger

tapping. Note the high level of noise. On the right-hand side

is the output of DMC on the original z map. Significance

values of DMC maps can be assigned using standard cluster-

size statistics that are commonly used in most statistical

packages [21–23] (but see discussion below concerning cluster

size/intensity based statistical inference). Finally, further



Fig. 5. Example of DMC application to bilateral finger tapping. The figure on the left (A) shows thresholded ( P b.01 corrected) z values for a single subject.

The figure on the right (B) shows the application of DMC to the original z map.
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thresholding will not, in general, produce results similar to

DMC unless the local density is homogeneous throughout the

brain map, which, for brain imaging data is highly unlikely.
Fig. 6. Two artificial data sets consisting of nongaussian clusters and

nonisotropic variance; in the left top panel are two thin clusters with

unequal variance; in the top right panel, two weakly connected clusters with

higher density central modes.
2. Methods

2.1. Example artificial data

We consider next the response of the dense mode

clustering on two kinds of artificial data, which are common

fragments one might see in brain imaging data. Both cases are

constructed from nongaussian random spatial processes

[24,25] and possess nonisotropic variance commonly seen

in fMRI data. The first case represents long thin closely

contiguous clusters separated by a gap similar to the width of

the smallest variance. The second case is similar to the first,

except that the source noise is smaller per cluster, creating

tighter strings of data points and a weakly joined connective

noise cluster about twice the width of either source cluster

(Fig. 6). We apply each hierarchical clustering methods

(Ward’s, single linkage) to each of the benchmarks and show

the results in a series of graphs in the next results section, and

we also apply k means by seeding the method with 2 clusters

and finally show the results of DMC in the final panels later in

Fig. 8 (below).

2.2. Example experimental case

2.2.1. The event perception task

In order to provide a diverse set of ROIs, we will use a

cognitive comprehension task that requires subjects to

bparseQ familiar action sequences into action clusters

bounded by event change points. Six subjects were shown

an animated movie consisting of a geometric shape moving

randomly among other geometric structures. Subjects were

asked to press a button when they identified an event change.

Scanning was performed with a 3T Siemens Allegra

head-only MRI scanner (Erlangen, Germany). We used a 3D

magnetization-prepared rapid acquisition gradient-recalled

echo (MP-RAGE) T1-weighted scanning sequence with

2-mm isotropic resolution to acquire structural images for
each participant. A T2*-weighted asymmetric spin-echo,

echo planar sequence with flip angle of 908 and a 30-ms time

to echo were used to acquire functional data. There were 32 4-

mm slices, with each slice consisting of 3.75�3.75–mm cells

in 64�64 grid acquired in whole volumes. The time to

repetition for each volumewas 2 s. All data analysis was done

using FSL [10]. MP-RAGE for all subjects were registered to

standard atlas using FSL’s FLIRTsubprogram to theMontreal

Neurological Institute (MNI) atlas template. Data were

realigned and detrended also using the standard FSL FLIRT

tool. All localization was done in the Talairach and Torneax

atlas [26] using appropriate affine transformations fromMNI-

registered T1 and BOLD images. Subjects responses in this

task are highly correlated and with strong between-subject



Fig. 7. Panel (A) shows a typical groupwise TRD (temporal response density) showing the response of 22 subjects indicating a bsignificant event changeQ in the
familiar action sequence. The dashed line shows significant excursion above a z value with P b.01 indicating approximately 10 event change points. In panel

(B), we show the GLM using the TRD regressor and the resultant brain activity at P b.05 (corrected) shown in two views.
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agreement on change points as well as within-subject parsing

rates. The subject responses were used as regressors to

perform GLM analysis. Analysis was performed out using

FMRI Expert Analysis Tool Version 5.1, part of FSL. The

following preprocessing was applied: high-pass temporal

filtering (gaussian-weighted straight line fitting, with

sigma=12.5 s). Time-series statistical analysis was carried

out using FILM (FMRIB’s Improved Linear Model [27]).

Registration to high resolution and standard images was

carried out using FLIRT [28,29] using 3- and 9-parameter

models, respectively.

2.3. Experimental design

First, a group response function [temporal response

density (TRD)] was formed by forming the histogram of

all subject responses, using 1-s bins. So, the group response

function would have a value of 3 at t=10 if three subjects

pressed the button between 10 and 11s after the commence-

ment of the movie. The subjects’ own response TRD (which

is binary) was weighted by the group response function

producing a mixture of group/individual agreement. This

group/individual weighted response was further convolved

with the Hemodynamic Response Function (HRF) and used

as a regressor for the GLM analysis, thus indicating

selective tissue per subject’s perceptual event change points.

In Fig. 7, we show an example of a group TRD (based on

22 subjects), which was used in the construction of the

regressor discussed before and a corresponding SPM glass

brain plot at Pb.05 (corrected).

2.4. Adding noise to data

A uniform random number generators was used to add

100, 500, and 1000 random points in space to the masks. We

have also used gaussian noise as well as more point centered

noise such as Laplacian, which produces similar results;

however, uniform noise produced the least bias toward any

particular clustering algorithm. The noise bench mark

performs clustering on each of these data sets and looks at

two different indices of noise that measure the quality of the

clustering:

1. The number of imposters — voxels that come from

the noise set and not the original data [this is identical
to a false alarm rate with highest hit rate — thus a

maximal point on a receiver operating characteristic

(ROC) curve]. Note that even a perfect clusterer will

include some imposters, because by chance, several

of the imposters will fall in or near the original

clusters. But generally, fewer imposters is better.

2. Volatility: we compare the centroids and the numer-

ical count of the overlaps and symmetric differences

of clusters in the methods. The less these variables

change with the addition of noise, the better. This is

also a stability test, which allows one to assess the

perturbation of the true clusters to noise.

These noise levels are chosen to significantly stress the

clustering method and reveal its inherent stability and type I/

type II error profile (or ROC measure) rather than what

might be considered btypicalQ noise levels.

2.5. Parameter selection

Because DMC automatically erodes or removes voxels

that do not pass the dense point threshold, we allow all other

cluster algorithms to also erode (based on rank order

similarity) voxels at a similar rate to DMC to make proper

inferential comparisons. For the k means clusterer, we use

an erosion with an initial value of k=20, since for the event

perception data, DMC tends to identify approximately

20 clusters (although, based on contiguity, there are about 5 or

6). The erosion constant is also set to 20%, which is similar to

DMC’s overall erosion loss in this same data set. For the

Ward’s based clusterer, in order to reduce computational

overhead, we begin with an initial k means clustering with

k=1000 andmerge until there are 20 clusters again similar for

the DMC solution. For the DMC, we use a value of r=7.2 and

select the value of k that maximizes the pseudo-F ratio, as

discussed above.
3. Benchmarking

3.1. Imposter voxels

For each cluster, we track the number of voxels that come

from the added noise. This is done as follows — the

implementation of all of the clustering methods we have used

allow the addition of additional information to the data points.
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So we tag each point with a bsubject IDQ field, while a separate
subject ID is assigned to the noise data. We then compare the

number of voxels from this bnoise subjectQ across different

methods, for different numbers of noise voxels.

3.2. Symmetric difference

We can compute set-symmetric differences as follows: first,

it is possible to make a correspondence between clusters by

assigning each cluster in the no-noise condition to a cluster in
Fig. 8. Benchmark tests of two artificial data sets consisting of nongaussian clusters

results for single linkage clustering in which the tendency for this method to bcha
panel (B), we show the results for Ward’s clustering, which with k =2 in k means w

in two parts on the dimension with the largest variance while missing the main m

these two benchmarks, with erosion parameters set to 40% of the data set; as erosio

clusters. Note that DMC finds local density within each group.
the noise condition, by using nearest centroid. This is not

necessarily a one-to-one correspondence, but in the case of low

volatility, it is. Then we examine the intersection of the two

corresponding clusters. We would expect that the difference

should be small, and consist mostly of noise voxels.

3.3. Comparing to specific clustering methods

Erosion was done for all benchmark clustering compar-

isons (k means and Wards), which uses an erosion process
and nonisotropic variance shown above in Fig. 6. In panel (A), we show the

inQ produces one large cluster in both cases, with a small outlier cluster. In

ill produce roughly the same outcome and, in this case, splits the distribution

odes of the data. Finally, in panel (C), we show the typical DMC output on

n is set to 0%, DMC detects both modes and misses less than 3% of the two
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that operates after sorting the points by distance from

centroid of the cluster that they have been assigned. Only

voxels in the top 20% are retained. This parameter is based

on DMC, which empirically erodes about 80% of the voxels

near a dense point. Erosion will vary with the original noise

in the data set and the level of thresholding used as input for

the clustering method. In the present data, we started with a

very liberally thresholded ( P b.1) z map, hence an

associated high level of erosion. Single linkage technically

has no centroid and typically produces a single-cluster;

erosion, therefore is not applicable. Besides single-linkage

clustering, we will also compare to one of the more popular

minimum variance methods, that of Ward’s method. This

method is very similar to k means — the difference is that k

means is a seeded method with a fixed number of clusters,

whereas Ward’s is agglomerative, with a variable number of

clusters. Indeed, these are somewhat related, and we will use

the k means method (with a large k, e.g., k=1000) to

initialize Ward’s method, as Ward’s is prohibitively slow for

very large data sets. Another simple approach is an

agglomerative single-linkage method that merges the two

closest clusters in nearest-neighbor distance. Similar to this

is the simple approach of simply taking connected

components [30]. The advantage of the two variance-

minimizing approaches is that they are very effective in

noisy data. They are good at identifying regions that contain

a tightly grouped set of points and are not prone to chaining.

The disadvantage of these methods is that they are

somewhat biased towards finding spherical clusters. On

the other hand, single-linkage clustering is very permissive

in allowing oddly shaped clusters. This is useful in
Fig. 9. Benchmark cases: shown above are the results for no-noise clustering (first

voxels are added uniformly to the volume (second row). Note the wide diversit

maximized visually to show the largest clusters for that given type of clustering and

that single-linkage cluster distribution corresponds to the glass brain distribution
circumstances where the clusters are likely to be nonspher-

ical, e.g., contiguous regions of suprathresholded voxels.

However, it is easily affected by noise and very prone to

chaining as we have previously discussed. DMC has the

potential of a compromise between flexible cluster finding

and noise reduction. In what follows, we provide benchmark

comparisons between aforementioned clustering algorithms

(single-linkage, Ward’s, k means) and DMC.
4. Results

Next, we provide comparisons between DMC and the

other clustering methods when noise is added, and their

effects are measured by the benchmark measures discussed

before (symmetric difference, centroid deviation and

imposters).

4.1. Qualitative results

Following the benchmark in Fig. 6, we show in Fig. 8A

the results for both cases using the single-linkage merging

rule. In both cases, as expected, single linkage found one

large cluster and then one small (3–4 points) and, in neither

case, detected the actual modes. In panel B, we show the

result of Ward’s analysis on the two benchmarks; in this

case, the dimension with the largest variance provides a split

point for the clustering. This of course masks the actual

modes in data set. Starting k means with 2 clusters produces

a similar outcome to Ward’s. Finally, we show the DMC

solution which does appear to detect both the modes and

shape of the underlying clusters. Without erosion, DMC
row) of the benchmark data set and the extreme noise condition when 1000

y in clustering solutions of the same data set. Note that the orientation is

is fixed for before the noise was added and after the noise was added. Note

in Fig. 7.



Fig. 11. Centroid deviation is a measure of stability of the cluster solution as

measured by the original centroids of the clusters and their movement under

noise perturbation. Note that most methods under even low-noise stress,

produce high volatility; DMC shows small but systematic changes.
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actually detects more than 97% of the modes in the two thin

cluster cases and splits the thin noise island near the

midpoint. In the next test, we run the clustering methods on

data typical of a integrative cognitive/perceptual task.

4.2. Qualitative comparison

The first thing to note is the wide diversity across

clustering methods with the same data set. The first row of

Fig. 9 shows, from left to right, the cluster solution for k

means’s DMC, Ward’s and single-linkage. For Ward’s,

DMC and k means, all six subjects were clustered

concurrently, and results show the common spatial clusters

across subjects. Single-linkage does not scale with voxel

number well and, consequently, cannot handle more than

one subject at a time; shown therefore in the last column is a

typical outcome for one subject, which corresponds to the

glass brain (due to single-linkage’s tendency to cluster all

voxels active in the map).

In the second row, we show the result of adding noise

(1000 voxels), showing k means, DMC, Ward’s and single-

linkage with a typical subject. Qualitatively, one can

observe the following:

! The DMC clustering solutions look very similar and

produce highly select areas on gyri or along specific

sulci (e.g., see red area in DMC clustering in Fig. 9).

The noise resistance is primarily due to high-density

clusters found in fMRI data sets.

! The two Ward’s method solutions are similar with the

noise condition producing more clusters distributed

more widely over the same area, but the method tends

to drop clusters.

! The k means solutions tend to repartition — find new

clusters that are probably noise and, therefore, must

drop originally good clusters. Dynamically then,

noise for k means can be disastrous; as in this case,
Fig. 10. Imposters as function of noise perturbation for all benchmark

clustering methods. Note DMC resists false alarms, while single linkage has

greatest sensitivity; k means and Ward’s are similar in response.
it repartitions on noise clusters that focus primarily on

visual cortex as compared with the existing regressor,

which doesn’t even appear in the original z map.

Single linkage in all subjects tends to find one large

cluster throughout most of the brain, and hence,

adding noise does little to disturb that particular

degenerate solution. Applying erosion to this set

(relative to the global centroid) would randomly

remove 80% of the voxels in solution neither

producing a plausible set of clusters or any further

density in the map.

4.3. Imposters

This benchmark is a measure of the extent to which the

set of voxels selected by the method changes. It does not

penalize subdivision or merging of clusters (Fig. 10). For

example, if adding noise produced a clustering solution that

was identical, except for the fact that two of the original

clusters were merged and one of the original clusters was

split into two, this benchmark would not penalize this.

Hence, a partitioning method such as k means would be

expected to do well on this benchmark, as global

reconfiguration is not penalized. The results do indeed

show the k means methods doing reasonably well, although

the mode clustering method is substantially stronger. Ward’s

method performs poorly on this benchmark. Single linkage

as expected is particularly poor in that it consistently chains

noise voxels. Moreover, as shown in Fig. 9, one large cluster

is produced; hence, noise can only add imposters to the

overall solution.

4.4. Centroids

This benchmark is a measure of similarity of two cluster

solutions, as measured by how close the centroids of the two

solutions are (Fig. 11). The mode clustering method



S.J. Hanson et al. / Magnetic Resonance Imaging 25 (2007) 1249–1262 1259
performs substantially better than other methods on this

benchmark. This is an important result — one might expect

that this benchmark should favor minimum variance

methods because the mode clustering method is prone to

allowing imposter voxels to bchainQ on the boundary of the

cluster, which should have a greater impact on the centroid.

The potential weakness of k means methods is that adding

noise forces a global repartitioning, so one cluster can (and,

in this data, does) split into two clusters. In this case, single

linkage produces one large blob for a cluster and hence has a

degenerate form of stability. Given the size of the

supercluster, it possesses no centroid in any local sense.

4.5. Symmetric difference

This is a more stringent version of the first benchmark —

it measures not only the global agreement between the

voxels selected but also the agreement in partitioning

(Fig. 12). So one would expect it to produce similar results

to the first benchmark but punish partitioning methods. This

does indeed happen (partitioning methods consistently

produce set-symmetric differences of N0.48, higher than

mode cluster in the high noise condition), although Ward’s

method performs surprisingly poorly compared to DMC.

Single linkage clustering again, produces a degenerate

solution that is resistant to noise in as much it produces

only one cluster.
Fig. 12. Symmetric difference: is sensitive to both centroid movement and

original cluster partitions. In this case, note that DMC shows a highly stable

solution in the face of noise relative to all other methods.
5. Discussion

Mode seeking proved to be effective in detecting spatial

density in noisy data. Ward’s method performed poorly on

benchmarks, proving volatile under noise conditions,

despite producing clustering solutions that subjectively

looked good. Of these benchmarks, the symmetric differ-

ence is the most stringent — any deviation from the noise-

free solution is punished with this benchmark. The

symmetric difference results showed that even adding a

very small amount of noise will produce solutions that have

little overlap with the original solution for all methods

except the mode-clustering method. In fact, the mismatch

in the high noise condition, with noise voxels added for

DMC, was 10%, while for k means and Ward’s, it was over

40% and 50%, respectively. In the low noise condition, the

mode cluster measure had a mismatch of less than 1%.

Methods for choosing bgoodQ clusters from thresholded

statistical maps have received relatively little attention in

the literature. For the most part, the emphasis is on

choosing bstatistically validQ thresholds without addressing

whether or not the partitioning into clusters is appropriate.

This is problematic because cluster-level statistics work by

trading off spatial localization for increased statistical

power, so if identified clusters are too large or too sparse,

one loses meaningful spatial localization of activity. Single-

linkage clustering, which often identifies large or sparse

clusters, is the defacto standard method for postprocessing
activation maps supported in popular softwares such as

FSL, AFNI and SPM. There are some software packages

that offer at least some flexibility. For example, AFNI

allows different forms of connectivity (26 or 18 nearest-

neighbor, etc.), permits one to specify an actual search

radius and also allows matching on nearby parameter

values and not just coordinates. However, the state of the

art is largely to put the onus on the user to choose a

threshold which provides appropriate spatial localization

and density. Dimitriadou et al. [31] benchmarked a number

of different clustering methods, using simulated data and

real data. This article compared clustering in the time

domain and focused on correctly detecting activations in

data sets. A replication of the same experiment with the

mode clustering method would be an interesting way to test

the method for time-domain clustering. The constraints in

this domain are somewhat different to spatial clustering, so

there is no reason to expect the same results. For example,

k means and other methods that are biased towards

spherical clusters may be more appropriate in this domain

(indeed, Ward’s performed better in the present bench-

marks). Partitioning methods may be more appropriate

when there is a single bsignal classQ than our case, where

we had an unknown number of sources.

5.1. Intersubject clustering

It is possible to use the DMC method or, for that matter,

any clustering method across subjects; this is not unique to

DMC. However, we encourage this particular type of

analysis since it focuses the analysis on a tradeoff between

individual differences and aggregate spatial location. Basi-

cally, rather than cluster spatial points in averaged coor-

dinates taken over subjects, one can first register each

subject’s data to a common space (MNI) and then create a

concatentation of all coordinates of different subjects as if



Fig. 13. Intersubject clustering using DMC. Note color coding of clusters indicating common location agreement. Clustering is done by combining all subjects

voxels in one input file using an voxel subject index, allowing the clustering to be scored for common spatial location through subject agreement.
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they were taken from the same subject. Specially, the input

for the clustering algorithm consists of the concatenation of

the lists of coordinates obtained from all subjects with an

appropriate subject index which allows scoring (using the

total subject agreement on that voxel as a figure of merit;

see Fig. 13). Note that this method allows the clustering

mechanism to discover agreement between subjects, instead

of resorting to averages (which may misrepresent the data,

especially if some subjects have a greater degree of activity

than others; see also Ref. [32]). Compared to other

clustering methods, DMC would tend to discover a higher

subject agreement as compared due to the mode seeking

aspect of the method. A future version of intersubject

clustering would include a likelihood function that trades off

a function of subject agreement with spatial location

variables (intensity, local density etc.).

5.2. ROI selection

Since most experimenters have a hypothesis about active

brain regions, one typically wants to use anatomical criteria

to guide ROI selection. Because of prior understanding of

the coupling of function and anatomy, one will typically use

anatomical information to postprocess cluster information.

For example, a spatially contiguous cluster that spans more

than one anatomical region is a good candidate for

subdivision. The advantage of selecting via functional

activity is that the selection is finer — all voxels selected

demonstrate substantial condition-dependent change and,

hence, are good candidates for downstream analysis. So,

ROI selection guided by functional criteria is likely to

produce ROIs that are less noisy in the sense that they

conform well to the investigators hypotheses.

5.3. Inferential Statistics for cluster size and set

Inferential statistics for cluster size inferences have been

covered in depth in prior work [9,30,33–35]. Early work

defined cluster size statistics based on the assumption that
there is some functional relationship between activation

intensity and number of contiguously activated clusters.

This work first characterized the cluster size distribution as a

spatial point process, assuming a Poisson process, while

later work using Random Field Theory (RFT), introduced

more complex alternatives which can trade off intensity and

spatial extent in order to do inference. For the present

algorithm (DMC), since the clusters are spatially contigu-

ous, cluster size-based statistics using either RFT or

permutation methods will still be valid. Nonetheless,

DMC clusters would tend to produce cluster size distribu-

tions more peaked with lighter tails then densities based on

independent spatial point processes that might arise in

single-linkage algorithms. Consequently, it is probably the

case that the standard cluster size inference framework so

far developed in neuroimaging analysis is not independent

of specific clustering algorithms. A more serious issue with

simple cluster size approaches is the assumption that size of

the cluster is a measure of significance; clearly, familywise

error at the cluster level is minimized in larger clusters

(although with a resultant size bias); it depends on an

unspecified assumption of density of the clusters them-

selves, a factor highlighted by the present algorithm.

Bivariate cluster size approaches that incorporate both

cluster size and intensity have a similar bias, since intensity

will tend to co-occur with larger clusters. Nonetheless, it is

possible to imagine a small but highly dense area of the

brain that is more significant in terms of intensity magnitude

but, at the same time, one of the smallest clusters in a field

of clusters (e.g., consider how the bFFAQ is defined). In

general, P values can be assigned at least in a similar way to

the present clusters results as in the standard single-linkage

case, using permutation methods suggested by Hawasaki

et al. It is clear from this discussion, however, that the

relationship between cluster size, density and cluster

algorithms will require a closer look at the underlying

probability assignment even in the standard case [36–39].



Appendix A. Dense mode clustering algorithm

Pseudocode(main function)

#cluster_distance returns the distance from a point to the

nearest cluster in that point function cluster_distance

(cluster,x)

return min([distance(x,y) for y in clusters])

# nearest_cluster(clusters,x) returns the shortest distance

from a point x to any point in any cluster in clusters.

function nearest_cluster(clusters,x)

precondition(not empty(clusters))

d=distance(clusters.first(),x)

for c in clusters

db_min(cluster_distance(x,c),d)

return d

#pairs returns all distinct pairs (but not including permuta-

tions of the same pair, e.g., pairs (1,2,3 )=(1,2),(1,3),(2,3)

functionpairs(L1,L2)

result=0.

for x in L1

for y in L2

append(result, (x,y))

return result

function pairs (L1)

result=0.

for i in 1..length(L)

for j in i+1..length(L)

append(result,L[i],L[j])

return result

# Find nearest point to given cluster function nearest_point

(c1,c2)

for x,y in pairs(c1,c2)

if distance(x,y) b d

p1 b_x

p2 b_y

return p1,p2

#w merge with Romeo and Juliet rule starting with smallest

pairwise distance. function rj_merge (clusters)

for c1, c2 in pairs (clusters)

p1,p2 b_nearest_point (c1, c2)

d1 b_mean ([distance(p1,x) for x in c1])

d2 b_mean ([distance(p2,x) for x in c2])

if d(p1,p2) b (d1+d2)/2

merge_clusters(c1,c2)

return TRUE

return FALSE

dense_points b_empty_list()

for x in points

count b_0

for y in points

if distance(x,y) b r

count b_count+1

if count N =THRESHOLD

dense_points b_append(dense_points,x)

clusters b_empty_list()

for x in dense_points

if not empty (clusters)

c=nearest_cluster (clusters,x)

d=cluster_distance (c,x)

if d b R append(c,x) else

append(clusters,[x])

else

append(clusters,[x])

# keep merging until we can’t do it any more

try_mergeb_1
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while(try_merge)
_ _ _
try mergeb rj merge(clusters)
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