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Pattern classification precedes region-average hemodynamic response in early
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How quickly can information about the neural response to a visual stimulus be detected in the hemodynamic
response measured using fMRI? Multi-voxel pattern analysis (MVPA) uses pattern classification to detect
subtle stimulus-specific information from patterns of responses among voxels, including information that
cannot be detected in the average response across a given brain region. Here we use MVPA in combination
with rapid temporal sampling of the fMRI signal to investigate the temporal evolution of classification accu-
racy and its relationship to the average regional hemodynamic response. In primary visual cortex (V1) stim-
ulus information can be detected in the pattern of voxel responses more than a second before the average
hemodynamic response of V1 deviates from baseline, and classification accuracy peaks before the peak of
the average hemodynamic response. Both of these effects are restricted to early visual cortex, with higher
level areas showing no difference or, in some cases, the opposite temporal relationship. These results have
methodological implications for fMRI studies using MVPA because they demonstrate that information can
be decoded from hemodynamic activity more quickly than previously assumed.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Although the neural activity in visual cortex associated with a visual
task such as category recognition begins within a few hundred millisec-
onds after stimulus presentation (Rust and Dicarlo, 2010), associated
change in blood flowmeasured with functional magnetic resonance im-
aging (fMRI), known as the hemodynamic response (HR), begins seconds
later, and evolves over the course of several seconds, originating in a
constrained spatial region, and spreading outward from that point
while rising in amplitude (Shmuel et al., 2007). The complex spatiotem-
poral dynamics of the HRmake it difficult to predict when themaximum
amount of information about neural activity should be recoverable from
the signal. Moreover, the time at which maximal information about
brain activity is recoverable may not be the same in different types of
analyses or different brain regions. Because knowledge of when maxi-
mal information is recoverable from fMRI data is of great utility for op-
timizing experimental designs and analyses, we undertook a systematic
investigation of the timecourse of information availability in the HR.

There are two types of analyses commonly performed on fMRI data:
univariate and multivariate. In univariate analyses, a general linear
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model (GLM) is applied to each voxel individually. By contrast, multi-
variate pattern analyses (MVPA) of fMRI data take into account rela-
tionships in the activity of multiple voxels. Several recent reports have
begun to investigate the timecourse of MVPA classification accuracy
during a range of cognitive tasks, showing that although the MVPA
timecourse roughly tracks the region-average HR timecourse, classifica-
tion accuracy can have temporal dynamics that differ from the
region-average HR (Bode and Haynes, 2009; Greenberg et al., 2010).
In fact, under certain conditions, accurate classification can persist
even after the region-average HR has returned to baseline (Harrison
and Tong, 2009).

We hypothesized that the reverse might also be the case, namely
that HR patterns between voxels in a region would be able to support
MVPA classification prior to a significant rise in the region-average
HR. We will call this the “early onset” hypothesis. This hypothesis
could be true if the HRs of individual voxels deviated reliably from
baseline early in the timecourse, without being uniform enough to
cause the region-wide average to deviate from baseline. Similarly,
we hypothesized that peak classification would not always occur at
the same time as the peak of the region-average HR. We will refer
to this as the “early peak” hypothesis. In univariate analyses, peak
region-average HR will by definition yield the largest difference be-
tween conditions and hence the largest effect size, but this is not
the case for MVPA, where HR patterns could potentially contain
more information about experimental conditions at timepoints be-
fore (or after) the peak region-average HR. This could be the case,
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for example, if the patterns were made less informative by the spatial
spreading of blood through the capillary bed that may occur as the HR
approaches its peak.

We tested early onset and early peak hypotheses in a number of
functionally defined regions in visual cortex. In order to characterize
the timecourse of the region-average HR and classification accuracy as
precisely as possible, we collected fMRI data over the occipital and tem-
poral lobes at a high temporal resolution (one acquisition = 739 ms),
using a slow event-related design, while participants viewed pictures
of faces and houses. We analyzed stimulus category classification
at each acquisition and compared classification accuracy to the
region-average HR within each predefined ROI. We find that both
the onset (first above-chance classification) and peak (most statistically
significant classification) of the MVPA analysis precede the onset (first
significant deviation from baseline) and peak (most statistically signifi-
cant increase from baseline) of the region-average HR in V1, but not in
other visual areas.

Methods

Participants

11 participants (mean age = 26.5, five female) were recruited from
Dartmouth College. All participants had normal or corrected-to-normal
vision and, prior to participating, gave written, informed consent under
a protocol approved by the Dartmouth Committee for the Protection of
Human Subjects.

Experimental design

During each experimental run, participants viewed images of human
faces and houses (10 of each) from the stimulus set used by Haxby and
colleagues (Haxby et al., 2001). Of the 10 faces, five were males. All pic-
tures were presented foveally within a 7.6° (degrees of visual angle) by
8.3° rectangular window. On average, house stimuli were ~6.0° wide
by ~3.8° tall, and face stimuli were ~4.5° wide by ~7.6° tall.

We used a slow event-related design, in which subjects were
presented with a single stimulus for one acquisition (739 ms), which
was always followed by an inter-stimulus interval spanning 14 acquisi-
tions (10.3 s). Subjects were instructed to perform a one-back task dur-
ing which they pressed a button whenever the currently presented
stimulus was identical to the previously presented stimulus. This
one-back task was employed to ensure that subjects remained alert
and awake. All 20 stimuli were shown in a random order once per
run, with an additional three being selected randomly for “same” trials,
where the stimulus was identical to the preceding stimulus. “Same” tri-
als were excluded from the analysis. With a total of 23 presentations,
each run had 360 acquisitions. 10 runs were collected per subject.
Stimulus timing and presentation were controlled using MATLAB (The
Mathworks; Natick, MA) in combination with Psychophysics Toolbox
Version 3 Software (Brainard, 1997; Pelli, 1997). Stimuli were projected
onto a screen behind the scanner bore which subjects viewed through a
mirror mounted on the head coil.

Data acquisition

Images were acquired with a Philips 3 T Achieva Intera scanner
with an eight-channel head coil at the Dartmouth Brain Imaging
Center. In order to maximize the temporal resolution of the acquired
volumes, we used a rapid scanning protocol, PRESTO-SENSE (Golay
et al., 2000), two-shot acquisition scheme with an EPI factor of 17,
which allowed us to acquire a partial brain volume every 739 ms
(17 axially-oriented slices, 3.0 × 3.0 mm in-plane voxel resolution,
3 mm slice thickness, no gap, interleaved slice acquisition, FOV =
240 × 240 × 51, TR = 21 ms per slice, TE = 14 ms (effective TE =
35 ms), flip angle = 10°, acquiredmatrix size = 80 × 63, reconstructed
matrix size (zero filled) = 80 × 80, P reduction (RL) sense factor of 2, S
reduction (FH) sense factor of 1). It should be noted that the acquired
matrix size is not what onemight expect mathematically. This is because
the PHILIPS software attempts to protect the user from SENSE artifacts
by enlarging the FOV before SENSE is applied. Without SENSE, the FOV
is 240. However, at SENSE R = 2, the value is 129 and not the expected
120 (240/2). Once the image is reconstructed internally, it is cropped to
the desired FOV of 240 (instead of 2 ∗ 129 = 258) and the resulting im-
ages have a matrix dimension of 63 voxels.

This partial brain volume covered most of the occipital lobes, in-
cluding all of retinotopic cortex, and parts of the temporal lobes, in-
cluding lateral occipital cortex (LOC), the occipital face area (OFA),
the fusiform face area (FFA), and the parahippocampal place area
(PPA). 2 dummy scan acquisitions (~1.5 s) followed by 14 partial
volume acquisitions (~10 s) of blank stimuli were collected at the
beginning of every scan. High-resolution structural T1-weighted
MPRAGE full-brain scans were also acquired for each subject (160
sagittal slices, 0.94 × 0.94 mm in-plane voxel resolution, 1 mm slice
thickness, acquired matrix size = 256 × 232, reconstructed matrix
size = 256 × 256, FOV = 240 × 240 × 160, TR/TE = 9.9/4.6 ms, flip
angle = 8°). This high-resolution scan and scans collected with the
sameparameters during other sessionswere used to constructflattened
cortical meshes for retinotopic mapping. A T1-weighted coplanar
anatomical image with the same slice orientation as the PRESTO data
was also collected. This image was used to aid co-registration of the
high-resolution anatomical scan to the functional data.

Localization of regions of interest

We performed retinotopic mapping using 22.5° rotating mono-
chromatic checkerboard bowties. Intact and scrambled objects were
used for localizing LOC (Kourtzi and Kanwisher, 2001). In order to lo-
calize areas OFA, FFA and PPA, we contrasted short (2 s) dynamic
videos of non-translationally moving objects and scenes with analo-
gous videos of faces (Fox et al., 2009). All localization data were ac-
quired during separate scanning sessions using standard fMRI EPI
acquisition sequences. Functionalmappingwas conducted using proce-
dures described previously (Caplovitz and Tse, 2010; Sereno et al.,
1995; Slotnick and Yantis, 2003).

Polar angle representation in visual cortex was measured using
two symmetrical wedges of a black and white polar checkerboard grat-
ing flickering at 8 Hz (Sereno et al., 1995; Slotnick and Yantis, 2003).
Each wedge subtended 22.5° of 360° and occupied a given location for
one TR (2000 ms) beforemoving to the adjacent location in a clockwise
or counter-clockwise manner (direction alternated across runs). Corti-
cal representation of eccentricity was measured using expanding con-
centric checkerboard-patterned rings flickering at 8 Hz that each
spanned ~1° of visual angle in ring width. For every TR, a given ring
was replaced by its outward neighbor, except that the outermost ring
was replaced by the innermost ring at the end of the cycle. This process
was repeated until the end of the run. For each participant, five runs of
each direction were collected for the wedge stimulus and three runs
were collected for the concentric rings. Retinotopic areas (V1d, V1v
V2d, V2v, V3d, V3v, V4v and V3A/B) were defined as masks on the
basis of standard criteria (Sereno et al., 1995), assuming a contralateral
quadrant representation for V1d, V1v, V2d, V2v, V3d and V3v, and a
contralateral hemifield representation for V4v/VO1 and V3A/B (Tootell
et al., 1997). Visual areas V1, V2, V3 and V3A/Bwere created bymerging
the dorsally and ventrally defined regions of each respective area.
V4v and the hemifield representation just anterior to it, called VO1
(Brewer et al., 2005), were combined because the border between
these regions was not distinct in most subjects.

Retinotopic mapping, cortical reconstruction and volumetric seg-
mentation, as well as cortical inflation and flattening, were performed
using the FreeSurfer image analysis suite (Dale et al., 1999; Fischl et al.,
1999). Once anatomicalmaps of the occipital lobeswereflattened using
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FreeSurfer, these surface models were imported into SUMA (Saad et al.,
2004), where ROIs for areas V1–V4v were drawn by hand based on
functional retinotopic activation maps created using AFNI software
(Cox, 1996). Any overlapping voxels between adjacent ROIs were re-
moved to guarantee a conservative specification of each ROI.

We created individual masks for LOC, OFA, FFA, and PPA for each
subject via GLM contrasts (intact > scrambled objects for LOC, dynamic
face videos > dynamic object videos for OFA and FFA, and dynamic ob-
ject videos > dynamic face videos for PPA), using AFNI's 3dDeconvolve
program (Cox, 1996). We then determined the smallest cluster size for
each unilateral area among all of our subjects. In order to create bilateral
masks of each area with approximately equal size, we increased t-value
thresholds for the hemispherewhere the ROIwas larger, so that the ROI
for each subject had an approximately equal size on both sides of the
brain, and then combined the two regions to create a single ROI. Sub-
jectswho did not show bilateral activation for a given areawere exclud-
ed from later analyses in that ROI.

Data preprocessing

Each functional run was motion-corrected to the first functional
volume of the first run (that is, the volume that was acquired closest
to the anatomical image) for each subject, using AFNI's 3dvolreg program
(Cox, 1996). High-resolution anatomical images were coregistered to
the first functional volume using AFNI's align_epi_anat.py program
(Saad et al., 2009). We then co-registered an anatomical image aligned
to our previously collected functional ROIs, to the anatomical image
aligned to the experiment, and applied this same transformation to
the ROIs, so that they were aligned to the experimental data. Functional
runs were also high-pass Fourier filtered using 3dFourier with a cutoff
frequency of 0.01 Hz, linearly detrended and de-meaned, with all mo-
tion regressors removed, and normalized to the voxel by voxel unit
normwithin a run (making the sum-of-squares for each voxel time se-
ries equal to 1, using AFNI's 3dDetrend program (Cox, 1996).

Unparameterized analysis of region-average HR and multi-voxel pattern
analysis

All analyses were performed separately for each subject within
each of the nine pre-defined, subject-specific ROIs (V1, V2, V3, V3A/B,
V4v, LOC, OFA, FFA, and PPA). In order to determine the region-average
HR across time, we found the average unit-normalized values within
each ROI that were associated with each category across all runs (see
Fig. 1 and Supplementary Fig. S1). This was done at each timepoint
beginning with stimulus onset. To approximate the baseline for each
category-associated region-average HR within an ROI, we found the
average of the normalized values associated with each category at
the first timepoint across runs, and subtracted this number from
the signal change values for both categories at every timepoint. We
then performed t-tests between the percent signal change for a
given category and zero at every timepoint, using the run-wise averages,
and identified the first timepoint that gave a significant (uncorrected
p b 0.05) two-tailed t-value for either category. This was identified as
the first timepoint at which one of the category-dependent region-
average HRs was different from baseline for that subject within the
given ROI; this was, in other words, the timepoint of the onset of the
region-average HR.

For the multi-voxel pattern analysis, we trained two different clas-
sifiers, linear support vector machines (SVM) and sparse multinomial
logistic regression (SMLR), as implemented in PyMVPA (Hanke et al.,
2009) on the preprocessed and normalized pattern of activity within
each ROI labeled with the stimulus categories for nine of the function-
al runs, and then proceeded to test on the patterns of activity from the
tenth functional run. This was done with all possible combinations of
nine runs of training data and one run of testing data (leave-one-run out
cross-validation). This allowed us to obtain classification accuracies for
each timepoint using each classifier. We then performed nonparametric
Monte Carlo simulations by reshuffling face and house labels for the
voxel response patterns, and training and testing 1000 times on these
reshuffled datasets for each timepoint. We thus obtained a chance level
distribution for each timepoint and identified the first timepoint during
which classification accuracywas greater than the top 5% of simulated ac-
curacies. This was identified as the first timepoint at which classification
was significantly above chance. We then subtracted the time of earliest
above-chance classification using each classifier from the time of onset
of the region-average HR. This yielded a single value per ROI for each sub-
ject that quantified the latency difference between first above-chance
classification and the onset of the average HR.

We performed a similar analysis to compare the time of region-
average HR peak to the time of peak classification for each subject.
The peak of the region-average HR was identified as the timepoint
with maximum positive t-value associated with either category. We
identified the time of peak classification as the timepoint for which
the Monte Carlo simulation returned the lowest p-values. We then
subtracted the time of peak classification using each classifier from
the time of region-average HR peak. This yielded a single value per
ROI for each subject that quantified the latency difference between
peak classification and peak region-average HR. We also investigated
the influence of smoothing on our onset and peak effects, by repeating
the MVPA analysis, using both classifiers, on data smoothed with a ker-
nel 2–10 times the voxel size (6–30 mm).

Parameterized analysis of region-average HR and multi-voxel pattern
analysis

In order to further characterize the timecourse of classification ac-
curacy and compare this to the timecourse of the region-average HR,
we parameterized the region-average HRs associated with each con-
dition and the unsmoothed SVM and SMLR classification timecourse
for each subject within each of our ROIs. We used a double gamma
function for parameterization because such functions reasonably de-
scribe the shape of the hemodynamic response of visual cortex with
easily interpretable parameters (Glover, 1999). It is an open question
what kind of function best approximates the MVPA timecourse. For the
sake of consistency, however,weused the samedouble gamma-basedpa-
rameterizations for the MVPA accuracy timecourses and the condition-
associated region-average HR timecourses across all our ROIs. In order
to properly parameterize the individual timecourses, we anchored them
by zeroing the first timepoint of each timecourse and then normalized
all three timecourses (classification, face HR, house HR) within a given
ROI by subtracting the minimum value from the timecourse and then di-
viding it by the sum of values in that timecourse. Anchoring facilitates
function fitting under the assumption that any deviation from zero at
stimulus onset would be due to noise. We also limited our parameteriza-
tion to the first eleven timepoints of the timecourse, under the assump-
tion that any deviations from zero near the end of the trial might arise
from internal factors, such as preparation for the upcoming one-back
task (as shown by Harrison and Tong, 2009), rather than from perception
of the stimulus. Following zeroing and normalization we used MATLAB's
fit function with the nonlinear least squares method of fit and located
the onset of each timecourse as the first timepoint where each fitted dou-
ble gamma curve reached a normalized threshold value. The average
values of face HR, house HR and MVPA (SVM and SMLR) accuracy at the
time of onset as determined in the unparameterized analysis were used
as threshold values for each individual function. In some cases the fitted
double gamma curve failed to reach this threshold, at which point that
dataset was excluded from further onset analysis for that ROI. The
timepoint at which the fitted function reached its maximumwas consid-
ered the peak. The duration of each functionwas defined as the full dura-
tion at half the maximum value of each function (FDHM).

We excluded data in which the root-mean-square-error was bigger
than 0.05, indicating a suboptimal fit. On average, across all subjects



Fig. 1. Average timecourses across subjects (n = 11) for the nine ROIs considered. Error bars indicate the standard error of themean across subjects. Example face and house stimuli are
shown on the lower left and lower right, respectively. Individual subject timecourses within area V1 are plotted in Supplementary Fig. S1.
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Fig. 2. Unparameterized results. Average classification onset and peak differences for
classification using SVM (dark gray bars) and SMLR (light gray bars). The Y-axis indi-
cates the time difference between region-average HR onset/peak and onset/peak of
classification. Error bars indicate the standard error of the mean across subjects and
comparisons. The parameterized results are plotted analogously in Supplementary
Fig. S2.
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and for each analysis, fewer than two datasets per area were excluded
because of poor fits or failure to reach onset threshold. No more than
three datasets were excluded for any given dataset-analysis combina-
tion. Once all fitted estimates (onset, peak and duration) were found,
we calculated difference scores by subtracting the classification onset
time from the earliest region-average HR onset time, and the time of
classification peak from the time of region-averageHR peak, as described
above. Statistical comparisons of duration were performed directly on
the duration parameter estimates.

The contribution of individual voxels to early classification

We used two different methods to determine the contribution of
each voxel within an ROI to early classification with each of the two
classifiers. The first method, feature selection, used an F-score comput-
ed for each voxel by performing a one-way 1 × 2 ANOVA for both con-
ditions different from baseline, based on the HR at the onset of
above-chance classification. With only two conditions, the one-way
ANOVA is equivalent to a paired t-test, with F-scores equal to t2. We
computed the F-scores based on the training data alone, and averaged
across the cross-validation folds. This ensured that the test was orthog-
onal to our classification of interest (faces vs. houses), while allowing us
to rank the voxels according to the robustness of their response. Be-
cause the onset of above-chance classification was different for each
subject, the F-scores were computed based on face and house HRs at
different TRs for each subject. Feature selection also allowed us to deter-
mine the minimum number of voxels required for classification within
our ROIs, by selecting the subsets of voxels that had themost robust HR
at above-chance classification onset, again based only on the training
data, and attempt classification using just those subsets applied to
each subject's hold-out dataset. As a second method of determining
the contribution of each voxel to classification, we performed a voxel
sensitivity analyses, by extracting the actual weights assigned to each
voxel by the two classifiers during early classification; in this case, a
larger weight for a given voxel meant that its response contributed to
classification more strongly.

Results

Unparameterized analysis

The average timecourse of the HR for faces and houses, as well as
the average classification accuracy at each timepoint across all sub-
jects, is plotted in Fig. 1. Our timepoint-by-timepoint analysis of
region-average HR associated with each category and classification
accuracy yielded two onset difference scores for each subject.
These difference scores, one for each method of classification used
(SVM and SMLR), indicated the onset time difference between the
earliest above-baseline region-average HR and classification within
each ROI. In order to compare the onsets of region-average HR and
classification we performed a 2-way ANOVA on the difference scores
with ROI as the first factor and classification type as the second factor.
This revealed a main effect of ROI (F(8,166) = 5.13, p b 0.05), but not
of classification type (F(1,166) = .0168, p = 0.90), and no significant
interaction (F(8,166) = 1.78, p = 0.08). Planned, two-tailed compari-
sons revealed that both classifiers tested could reliably decode stimulus
category before the onset of the region-average HR associated with
either category in V1 (SVM: t(10) = 6.71, p b 0.005; SMLR: t(10) =
4.28, p b 0.005), and that this was also possible using the SMLR classifi-
er in V2 (t(10) = 3.71, p b 0.05). Throughout the text, unless otherwise
noted, all p-values are FDR-corrected for multiple comparisons. For
several ROIs, we found that the onset of above-chance classification oc-
curred later than the onset of the region-average HR, although this was
not consistent across the two classifiers (V3 using SMLR: t(10) = 7.46,
p b 0.005; LOC using SVM: t(10) = 3.13, p b .05; PPA using SMLR:
t(10) = 2.55, p b .05). For all other areas, both comparisons fell short
of significance (uncorrected p > 0.05). Fig. 2A shows the average
onset difference scores for both classifiers in every ROI tested.

Our timepoint-by-timepoint analysis of peak differences also yielded
two peak difference scores per region (one per classifier), indicating the
time difference between peak region-average HR and peak classification.
Weperformed an analogous 2-wayANOVA,which revealed amain effect
of ROI (F(8,166) = 9.70, p b 0.005), with no effect of classification type
(F(1,166) = 2.26, p = 0.17) and no interaction (F(8,166) = 0.79,
p = 0.61). Planned comparisons revealed that peak classification pre-
ceded the peak of both condition-associated region-average HRs in
V1 (SVM: t(10) = 3.72, p b 0.05; SMLR: t(10) = 2.8, p b 0.05). Peak
classification occurred later than the peak region-average HR in V3A/B
(SMLR: t(9) = 3.72, p b 0.05), V4v (SVM: t(10) = 4.89, p b 0.005;
SMLR: t(10) = 3.18, p b 0.05), and PPA (SVM: t(10) = 2.95, p b 0.05;
SMLR: t(10) = 3.5, p b 0.05). In two additional areas, this late peak
effect was significant at the uncorrected p b 0.05 level (LOC using
SMLR: t(10) = 2.78; FFA using SVM: t(7) = 2.39). The peak difference
scores are shown in Fig. 2B.

The timecourses of classification in V1 using each classifier, at every
level of smoothing, as well as with no smoothing are shown in Fig. 3A.
We calculated the onset and peak effects for each classifier, at each
degree of smoothing, and performed two-way repeated measures
ANOVAs, for peak and onset, with degree of smoothing as the first

image of Fig.�2
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level (0–30 mm) and classifier as the second.We found amain effect of
smoothing on onset (F(9,90) = 3.26, p b 0.005), with no othermain ef-
fects or interactions. We also found a main effect of smoothing on peak
(F(9,90) = 4.58, p b 0.005), with no other main effects or interactions.
However, when doing t-tests to test the significance of the onset and
peak effects at each level of smoothing we find that both effects persist
with smoothing up to 18 mm (for SVM) and 21 mm (for SMLR, see
Fig. 3B). The unsmoothed data yielded the largest onset effect for both
classifiers, whereas the peak effect was largest with a modest amount
of smoothing (6 mm for SVM and 9 mm for SMLR). To confirm that
classification is in fact relying on patterns of voxel HRs, even at high levels
Fig. 3. The effects of smoothing on classification in V1. 3A shows the classification timecourse
when classifying based on the region-wide averages (“ave”). 3B shows the effect of smoothin
(with “0” again meaning no smoothing), while the y-axis shows the size of the effect in secon
of smoothing, we attempted the same analysis using the region-wide HR
(that is, using a single “voxel” value per timepoint), and performed
classification at each timepoint (the timecourse can be seen in
Fig. 3A). As expected, this classification remained at chance through-
out the timecourse for both classifiers.

Finally, we compared the two classifiers, and found that they were
quite similar in performance. The onset times are not significantly
different (t(10) = 0.056, p = 0.59), while the peak time for SVM oc-
curred slightly earlier than SMLR on average, albeit not quite signifi-
cantly so (t(10) = 2.19, p = 0.054). For both classifiers the maximum
overall classification accuracy in V1 occurred with 6 mm smoothing
s for each classifier, at every level of smoothing, as well as with no smoothing (“0”) and
g on the onset and peak effects for each classifier. The x-axis indicates level of smoothing
ds.

image of Fig.�3
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and the two values were practically indistinguishable (SVM: 69.9%;
SMLR: 70.0%).

Parameterized analysis

In an additional set of analyses, we characterized and compared
the HR and classification accuracy data in a manner analogous to
that found in the “Unparameterized analysis” section, after both had
been fit with a double gamma function (Glover, 1999). This parameter-
ized approach largely confirmed the results of the unparameterized
analysis. A 2-way ANOVA on the parameterized onset difference scores
found a main effect of ROI (F(8,140) = 17.5, p b 0.005), with no main
effect of classifier (F(1,140) = 0.70, p = 0.42), and no interaction
(F(8,140) = 0.34, p = 0.95). Planned, two-tailed comparisons in-
dicated significantly earlier onset of classification in V1 (SMLR:
t(10) = 3.19, p b 0.05). In V2 this early effect was marginally sig-
nificant at the uncorrected p b 0.05 level (SVM: t(9) = 2.23, p =
0.053; SMLR: t(9) = 1.97, p = 0.08). Additionally, we found that
the onset of classification occurred later than the onset of the
region-average HR in LOC (SVM: t(7) = 3.16, p b 0.05; SMLR:
t(7) = 3.02, p b 0.05). For all other areas, both comparisons fell
short of significance in either direction (p > 0.05). A 2-way
ANOVA on the parameterized peak difference scores revealed a
main effect of ROI (F(8,160) = 17.1, p b 0.005), no main effect
of classifier (F(1,160) = 0.02, p = 0.90) and no interaction
(F(8,160) = 0.31, p = 0.96). Planned two-tailed comparisons revealed
that peak classification occurred earlier than the region-average
HR peak for both classifiers in V1 (SVM: t(10) = 3.66, p b 0.01;
SMLR: t(10) = 3.41, p b 0.01). This effect was also significant at
the uncorrected p b 0.05 level in V2 (SVM: t(10) = 2.4; SMLR:
t(9) = 2.29). Our unparameterized finding that peak classification
occurred later than the region-average HR peak in V3A/B, V4v, and
PPA, however, was not found using the parameterized analysis, as
no other areas reached significance.

The parameterized analysis also allowed us to calculate the full
duration at half maximum (FDHM) of each curve. This allowed us
to compare the duration of the face- and house-associated region-
average HRs with the duration of above-chance classification. We
performed a one-way ANOVA with a planned contrast (1 1 −1 −1)
for each ROI, testing whether the durations of above-chance classifica-
tion for both classifiers were either longer or shorter than the duration
of both region-average HRs. In V1, the ANOVA was not statistically sig-
nificant (F(3,40) = 1.62, p = 0.20), but the planned contrast indicated
that the timecourse of above-chance classification was systematically
shorter than the region-average HR (t(40) = 2.13, p b 0.05). In PPA,
the ANOVA was significant (F(3,40) = 3.59, p b 0.05) and the planned
contrast revealed that the timecourse of above-chance classification
was systematically longer than that of the region-average HRs
(t(40) = −3.16, p b 0.005). None of the ANOVAs or planned compari-
sons reached significance in any other area. The durations for all areas
are plotted in Supplementary Fig. S3.

Controlling for very late classification

We performed a control analysis to directly address the potential
confound that our early classification could in fact have been very late
classification; that is, early classification could in principle rely on resid-
ual information about stimulus type remaining in the region-average
HR from the previous stimulus presentation, if stimuli were improperly
counterbalanced. In order to rule out this possibility we attempted to
classify stimulus category prior to stimulus onset. If early classification
did in fact rely on signal ‘left over’ from the previous stimulus, we
should have been able to classify stimulus categories prior to the actual
presentation of the stimulus. We found that in all areas and all subjects,
classification accuracy was never significantly above chance prior to
stimulus onset (uncorrected p > 0.05 in all areas), indicating that
early classification exploited HR patterns that arose from the current
stimulus and not from the previous stimulus.

Controlling for ROI size

Since the V1 ROIs were considerably larger than any of our other
ROIs (average V1 size: 304 voxels), it could be that size alone distin-
guished V1 from the other ROIs and allowed early classification. To in-
vestigate this possibility, we merged the LOC, OFA, FFA and PPA
masks to create a new combined mask (CM) that was comparable
in size to V1 (in fact, it was substantially larger than V1 in most sub-
jects, average size: 517 voxels). We performed the same analysis,
comparing onset and peak of classification to onset and peak HR,
within CM. If V1 supports early classification due to a larger number of
voxels, then early classification should be possible within the large CM
ROI as well. This was not the case. For both classifiers, above-chance clas-
sification actually occurred later than average HR deviation from baseline
in CM (SVM: t(10) = 2.95, p b 0.05; SMLR: t(10) = 3.46, p b 0.01), and
classification and HR peaked at the same time (SVM: t(10) = 1.90,
p > 0.05; SMLR: t(10) = 1.32, p > 0.05). We conclude that neither the
onset nor the peak effects in V1 can be explained by a difference in size
between V1 and other areas.

Controlling for temporal variability

In order to further characterize the behavior of voxels in V1 and
CM, we compared the temporal variability in early and late visual
areas by calculating the HR onset and peak for each voxel in V1 and
CM using the same procedure for defining HR onset and peak as we
used for the entire mask. We then calculated the subject-wise variance
in both onset and peak time across all voxels in CM and V1, and
subtracted the two to obtain a variance difference score for onset and
peak. We then did permutation testing for both onset and peak, ran-
domly assigning signs (negative or positive) to each subject's score
5000 times, and calculating the mean difference score for each permu-
tation. This allowed us to calculate a p-value for our measured mean
variance difference score by comparing it with the distribution of
random scores created by the permutation analysis. We found that for
the onsets, CM had marginally significantly more variance than V1
(mean difference: 0.402 s, p = 0.0778), whereas there was no sig-
nificant difference in the peak variance (mean difference: 0.0859 s,
p = 0.846).

The contribution of individual voxels to early classification

We used two different methods to determine the contribution
of each voxel within an ROI to early classification using SVM and
SMLR: feature selection and a sensitivity analysis of the weights
assigned to each voxel by the classifiers. Both methods were
implemented in PyMVPA (Hanke et al., 2009) and since both rank
the voxels according to their ability to contribute to classification,
we would expect them to be largely in correspondence. For SVM,
this is what we found: F-scores found by feature selection and
SVM voxel weights were highly correlated (average Spearman
rank correlation coefficient = 0.605; the correlations were highly
significant at p b 0.001 in all individual subjects), which can be
seen in Fig. 4 where F-scores and SVM voxel weights in V1 are plot-
ted together. We limited the analysis to the top 100 voxels so that
voxels contributing little to classification (with low F-scores and
voxel weights) would not artificially inflate correlations. For SMLR,
however, we found that SMLR weights were not very correlated with
F-scores (average Spearman rank correlation coefficient = 0.108).
Only 4 out of 11 subjects had significant correlations (p b 0.05). Because
of this, the following analysis based on feature selectionwas done using
only the SVM classifier.
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Feature selection also allowed us to determine the minimum
number of voxels required for classification within our ROIs. We select-
ed the subsets of voxels that had the most robust HR at above-chance
classification onset, based only on the training data (1%, 5%, 10%, 20%,
30%, 40%, 50% with the highest F-scores) and attempted classification
using just those subsets applied to each subject's hold-out dataset
(the testing dataset). This was done using every possible combination
of leave-one-run out training and testing dataset splits. For 8 out of 11
subjects the number of F-score selected voxels necessary for SVM
classification at onset was very low (on average 7 voxels, ~2% of
the overall V1 mask), and for 3 others it was quite high (on average
112 voxels ~ 37% of the overall V1 mask).

We performed the same analysis within CM (consisting of LOC, OFA,
FFA and PPA), at the time of earliest classification, and determined the
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F-scores and SVM weights in a manner identical to that described
above. These values are plotted across all subjects in Fig. 5. As in
V1, the two were highly correlated (top 100 F-score voxels,
average Spearman rank correlation coefficient = 0.531; the corre-
lations were highly significant at p b 0.005 in all individual sub-
jects). As in V1, we found that SMLR weights were on average
less correlated with onset F-scores than SVM weights (average
Spearman rank correlation coefficient = 0.211). However, the
majority of subjects (7 out of 11) did have significant correlations
(p b 0.05).
Furthermore, the feature selection analysis reveals that, as was the
case with V1, very few voxels can drive SVM classification in 8 out of 11
subjects (on average 16 voxels ~ 3% of CM), with 3 subjects requiring
more voxels (on average 177 voxels, ~34% of CM). The three subjects
who required more voxels for accurate classification in CM were not the
same three who required more voxels for accurate classification in V1.

We also compared the onsets of highly informative voxels, as
identified using our feature selection method, to the onset of the en-
tire ROI. In V1, highly informative voxels on average leave baseline at
1.68 s after stimulus presentation, which is 1.54 s before the average
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across all voxels in the region. Highly informative voxels in the com-
bined mask, however, leave baseline 1.94 s after stimulus presenta-
tion, which is 0.168 s before the onset of the combined mask region
average. For both ROIs, the earliest that highly informative voxels
leave baseline is 1 TR (0.739 s) after onset.

In V1, at the timepoint of earliest classification, highly informative
voxels have a marginally stronger response to house stimuli compared
to the overall region-average (t(10) = 2.21, p = 0.051), whereas their
face responses are indistinguishable from the overall region-average
(t(10) = 0.15, p = 0.88). The same pattern is present in CM, but is
more pronounced (house difference: t(10) = 2.76, p b 0.05; face
difference: t(10) = 0.58, p = 0.58), as seen in Supplementary Fig. S4.
Finally, wewanted to investigate the locations of voxels thatwere high-
ly informative for early classification. We calculated the percentages of
highly informative voxels in the four V1 regions corresponding to each
quadrant of the visual field, and performed a two-way repeated mea-
sures ANOVA with left/right as the first level and dorsal/ventral as the
second level. There were no main effects and no interactions (see
Supplementary Fig. S5). To characterize the locations of highly informa-
tive voxels more precisely, we also plotted V1 voxel sensitivity weights
for SVM and SMLR onto flattened maps of occipital cortex created in
FreeSurfer (Dale et al., 1999; Fischl et al., 1999), using AFNI's (Cox,
1996) 3dVol2Surf function. As far as we could tell by visual inspection,
there were no meaningful or consistent patterns in the locations of
voxels with large sensitivity weights, across subjects for either classifier
(see Supplementary Fig. S6). This suggests that highly informative
voxels are not restricted to specific cortical locations in V1. In CM,
there were more highly informative voxels in LOC (average percentage
of selected voxels ~ 38%) and PPA (~43%)with amuch smaller percent-
age of voxels in FFA and OFA (~17% and ~2%, respectively).

Discussion

We find that above-chance MVPA classification in V1 is possible
before the average HR across the region leaves baseline, and that clas-
sification peaks earlier than the region-average HR, while having a
shorter overall duration. This consistent early classification is unique
to early visual cortex, and is not an artifact of the large size of V1 com-
pared with other cortical regions, as evidenced by the fact that an ROI
of comparable size to V1, (CM, consisting of LOC, OFA, FFA and PPA)
does not show early classification. Early onset classification is driven
by a small number of interspersed voxels that are approximately
evenly distributed among the regions of V1 corresponding to the
four quadrants of the visual field, and do not appear to be restricted
to specific regions of each quadrant (see Supplementary Fig. S6).

Early onset classification occurs for both SVM and SMLR. The onset
times for the two classifiers are not significantly different (t(10) = 0.056,
p = 0.59), while the peak time for SVM occurred slightly earlier than
SMLR on average, albeit not quite significantly so (t(10) = 2.19,
p = 0.054). For both classifiers the maximum mean overall classifi-
cation accuracy in V1 occurred with 6 mm smoothing and was practi-
cally indistinguishable between the two (SVM: 69.9%; SMLR: 70.0%).
Unlike SVM, SMLR voxel weights are not very well correlated with
F-scores, with only 4 out of 11 subjects showing a significant correla-
tion. This discrepancy may explain why SVM and SMLR classification
had different onsets for 8 out of 11 subjects.

Early onset classification cannot be explained by greater temporal
variance in V1, compared to areas later in the visual processing stream,
as V1 and CM are comparable in terms of temporal variance, with CM
actually having slightly more onset variance than V1. V1 on average
has a later onset than the CM average (V1: 3.22 s, CM: 1.75 s), but the
highly informative V1 voxels leave baseline as early as in later areas,
or slightly earlier, thereby allowing classification before the onset of
the region-average HR.

The initial negative dip that is sometimes seen in HRs in visual cortex
(Menon et al., 1995), could potentially drive early classification. Although
we performed two-tailed t-tests on the average signal which would
have identified negative as well as positive deviations from baseline, it
is possible that a subset of the voxels within V1 that exhibit the initial
dip are driving the effect, without leading to a significant negative dif-
ference in average signal. If this were the case, the highly informative
voxels identified using our feature selection method should show an
initial negative dip in HR. Another possibility is that voxels with evenly
balanced positive and negative responses to the two categories are driv-
ing classification, which would create an average response close to the
baseline. If this were the case, the average response of the informative
voxelswould be at baseline. In fact, we findneither to be true; highly in-
formative voxels are quite variable in their responses to both houses
and faces, but on average they have slightly larger responses to houses
than faces, compared with the region-wide average.

Our early classification results cannot be explained by the superior
sensitivity of MVPA compared to univariate analyses (Haynes, 2009).
The fact that we find an early peak in classification accuracy, as well
as early onset, and that both findings are restricted to early visual cor-
tex, cannot easily be explained by superior sensitivity. If the results
were due to superior sensitivity of MVPA, classification should also
persist for longer than the region-average HR duration. The longer
duration of classification in PPA may in fact be indicative of such an
effect. In primary visual cortex, we find the opposite: classification du-
ration is shorter than region-average HR duration (see Supplementary
Fig. S3) — the information extracted by MVPA before region-average
HR onset is no longer available as HRs return to baseline.

A potentially important difference between early and later visual
areas is that early visual areas are not specialized for processing
faces or houses, whereas areas like OFA, FFA and PPA are (Epstein
and Kanwisher, 1998; Kanwisher et al., 1997). Classification in V1 is
likely to rely on local image-level differences between the two cate-
gories (such as image extent, spatial frequency, or the presence of
high contrast straight edges in the house stimuli), rather than differ-
ences between the categories themselves. This could mean that a few
voxels highly sensitive to local features might drive classification, in
which case classification accuracy would presumably follow the HR
of these highly informative voxels, rather than the ROI-wide average.
In later areas such as FFA and PPA, on the other hand, the majority of
voxels have a categorical response to faces and houses as a result of
the way those areas are defined, which would mean that many voxels
are likely to contribute to classification. Hence, classification would
most likely follow the average hemodynamic response. We do in
fact find that for the majority of subjects a few highly informative
voxels can drive classification in V1, but our CM analysis indicates
that the same appears to be the case for category-sensitive areas
later in the visual processing stream. As was the case for V1, the aver-
age responses of the highly informative voxels in CM differ from the
ROI-wide averages in terms of their increased response to houses,
but not to faces. These results suggest that house stimuli evoke
more reproducible, coherent voxel response patterns, which can ben-
efit early classification in both V1 and CM. These findings make us
conclude that both early and late visual areas have small numbers
of voxels that are highly informative and can drive classification.
Rather than a difference in the number of voxels driving classification,
the relevant difference between V1 and later areas seems to be that in
V1, the highly-weighted voxels become informative prior to average
HR onset, whereas in later areas this happens only at or after average
HR onset.

These findings relate to previous results in several interesting
ways. Harrison and Tong (2009) found that orientation of a grating
held in memory could be reliably classified after region-average HRs
had returned to baseline in visual areas including V1 and V2. In our re-
sults, one object-sensitive cortical region, LOC, shows above-chance
classification consistently later than region-average HR onset. However,
our results in V1 show the converse of Harrison and Tong's finding,
namely that classification in early visual cortex is possible even before
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the region-average HR deviates from baseline. Regarding peak classifi-
cation, previous results have indicated that peak information availabili-
ty should follow the region-average HR peak (Fuhrmann Alpert et al.,
2007). Our findings show that for V1 this is not the case; peak informa-
tion availability in MVPA occurs prior to the peak of the region-average
HR. Interestingly, Greenberg et al. (2010) found that peak classification
performance during an attentional switching task occurred at approxi-
mately the same time in parietal regions as the region-average HR
peak evoked by attentional shifts, whereas the overall shape of the clas-
sification curve was markedly different from the region-average HR
timecourse, being much less symmetrical and having a faster rise time
and a slower decay to baseline. Given that their temporal resolution
was coarser than that used here, it is possible that more rapid temporal
sampling would reveal peak effect dissociations similar to those we re-
port here.

Bode and Haynes (2009) found that peak classification of task set
occurred earlier in intraparietal sulcus than in prefrontal cortex,
which they interpreted as indicative of timing differences in neural
coding between the two areas. Although it is tempting to propose
that our results are similarly indicative of timing differences between
V1 and later visual areas, the scale of the onset and peak differences
we find in V1 (~1 s) pale in comparison to the millisecond scale of
neural transduction between areas of visual cortex. Instead, we take
our results to indicate that at least with certain types of visual stimuli,
the timecourse of classification can be dissociable from the timecourse
of the average HR, independent of the timing of neural events. The fact
that such dissociations occur in some areas (in our case early visual cor-
tex) and not others, could potentially have implications for the timing
differences found by Bode and Haynes (2009). Future work should ex-
plore whether similar dissociations can also be foundwith other stimuli,
and in other areas of the brain.

The effect of smoothing on the onset and peak effect is informative
about the scale of the information on which early classification relies.
Our analysis of the effect of smoothing in fact suggests that early classi-
fication is not picking up on fine-scale information. For both classifiers,
the maximum onset effect occurs without any smoothing, whereas the
peak effect is largest with modest amounts of smoothing (6 mm for
SVM and 9 mm for SMLR; see Fig. 3). However, both the onset and
the peak effect persistwith smoothing up to 5–6 times the voxel resolu-
tion. It has been suggested that MVPA can rely on sub-voxel resolution
information from regionally correlated columnar responses in early
visual areas (Kamitani and Tong, 2005). If fine-scale information can in-
deed be extracted from patterns of voxel responses (see Chaimow et al.,
2011; Freeman et al., 2011; Op de Beeck et al., 2008), it is possible that
such patterns would be most informative early in the HR timecourse,
and contribute less to classification later in the timecourse, as they are
washed out by an increased influx of blood. Spatial smoothing, howev-
er, has been shown to reduce classifier sensitivity to information in the
high spatial frequency range most likely to contain columnar informa-
tion (Misaki et al., 2013). The fact that both the onset effect and the
peak effect survive even large amounts of spatial smoothing makes it
highly unlikely that either effect is dependent on fine-scale columnar
information.

As we have described, our analyses allow us to rule out a number
of potential explanations for our results, but in the end, it is unclear
how early classification occurs. We do not know what makes a
small subset of V1 voxels, evenly distributed across retinotopic cor-
tex, have early responses that allow them to contribute to early clas-
sification onset. We also do not know why voxels with earlier
responses appear to be more informative for classification overall,
leading to early peak classification. It may be that highly informative
voxels for early classification in our experiment would not be so in an
experiment using different stimuli. Further work will be required to
determine exactly why some voxels have early responses and
whether our effects generalize beyond the specific stimuli used in
our experiments.
We conclude that throughout occipital and ventral temporal cor-
tex there can be systematic differences in the temporal dynamics of
classification accuracy and the region-average HR. Most strikingly,
in V1 these differences include early onset of above-chance classification
and an early peak in classification accuracy. Our results show that stimu-
lus information is not tightly coupledwith the region-wide average HR in
all visual areas and that in V1 stimulus information can be extracted from
a small number of interspersed voxels more rapidly than previously
thought. Although it remains to be seen whether these effects generalize
to other areas and other stimuli, the fact that these effect can occur has
methodological implications for selecting the time at which to perform
classification analyses. Thesefindings should be thefirst step in thedevel-
opment of HR signal data acquisition methods and analysis techniques
that can extract information from the earliest components of the hemo-
dynamic response more effectively.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.04.019.
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