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ABSTRACT

Various cortical measures such as cortical thickness are rou-
tinely computed along the vertices of cortical surface meshes.
These metrics are used in surface-based morphometric stud-
ies. If one wishes to compare the surface-based morpho-
metric studies to 3D volume-based studies at a voxel level,
3D interpolation of the sparsely sampled 2D cortical data is
needed. In this paper, we have developed a new computa-
tional framework for explicitly representing sparsely sampled
cortical data as a linear combination of eigenfunctions of
the 3D Laplacian. The eigenfunctions are expressed as the
product of spherical Bessel functions and spherical harmon-
ics. The coefficients of the expansion are estimated in the
least squares fashion iteratively by breaking the problem into
smaller subproblems to reduce a computational bottleneck.

1. INTRODUCTION

Cortical surfaces have been characterized by various geomet-
ric measures such as cortical thickness [5] [7], curvatures [3]
[12] and area elements [6]. These measures are computed
along the vertices of cortical surface meshes. After surface
normalization, these measures are feed into statistical analy-
sis pipelines. Surface specific analysis tend to sensitize sur-
face specific tissue change and has been used frequently in
quantifying the amount and the shape of gray matter change.
The limitation of surface based approaches is the additional
computational burden of segmenting gray matters accurately
and obtaining cortical surfaces meshes.
On the other hand, the volume-based morphometric tech-

niques such as the deformation-based morphometry [2] [6]
or voxel-based morphometry [1] do not require the additional
step of obtaining cortical surface meshes. If one tries to com-
pare or combine both surface- and volume-based measures,
one has to transform the measurements into a common space.
Since the voxel space is more densely defined than mesh ver-
tices, it is easier to warp volume measures to a surface. In [5],
the computation intensive nearest neighbor search algorithm
[9] on an optimized k-D tree is used to compute the distance

map and warp volume measures to a cortical surface mesh. If
one wishes to warp surface measures such as cortical thick-
ness to the 3D volume space, one has to interpolate voxels
that the mesh vertices do not pass through.
In this paper, we present a new explicit functional rep-

resentation technique to address the problem of resampling
sparsely sampled cortical data to a densely defined volume
space. The cortical data is represented as the linear combi-
nation of basis functions, which are the eigenfunctions of the
3D Laplacian. The eigenfunctions are the product of spheri-
cal harmonics and spherical Bessel functions. Our approach
should offer more unified modeling flexibility than widely
used radial basis approaches [4] [8] since each basis has the
identical mathematical form. On the other hand, the radial
basis method represent data as the linear combination of low
degree polynomials and radically symmetric functions.
The eigenfunction expansion of cortical data is not a com-

putationally easy problem due to the large number of mesh
vertices upward of 700000. If one tries the traditional least
squares estimation [10] [14], one encounters a serious com-
putational bottleneck of solving 700000 linear equations si-
multaneously. Using the recently developed iterative residual
fitting algorithm [5], we reduce the computational burden to
solving few equations at a time. Our framework is very gen-
eral that it can be directly applicable to constructing the prob-
ability density function that describes water diffusion from
multiple shell data without much modification in the frame-
work [16] [17].

2. EIGENFUNCTION EXPANSION

Suppose the Cartesian coordinates (p1, p2, p3) are given by
the spherical coordinates (r, θ, ϕ) as

(p1, p2, p3) = (r sin θ cosϕ, r sin θ sin ϕ, r cos θ), (1)

where (θ, ϕ) ∈ [0, π]⊗[0, 2π). Define the spherical Laplacian
on the unit sphere S2 as

ΔS2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.
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Fig. 1. Basis functions Zlmn are visualized in the cube
[−1, 1]3. The images are the cross sections at p2 = 0 The
expansion is only valid within the ball of radius 1. The in-
dices of Zlmn corresponds to the spherical harmonic Ylm and
the n-th root of the spherical Bessel function Sl. The index
n basically relates to the scale of the pattern Ylm in the radial
direction.

The Laplacian in the solid ballM of radius 1 is then defined
as

ΔM =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
ΔS2

using the spherical coordinates (r, θ, ϕ). Consider the eigen-
value problem

ΔMf + λf = 0 (2)

in the solid ball of radius 1. We may assume the additional
Dirichlet boundary condition

f(r = 1, θ, ϕ) = 0 (3)

Substituting the separable solution of the form

f(r, θ, ϕ) = g(r)h(θ, ϕ).

in (2), we obtain

r2 g′′

g
+ 2r

g′

g
+ r2λ = −ΔS2h

h
= μ

for some constant μ.
We first solve for the second equation

ΔS2h + μh = 0. (4)

The solutions to (4) are the spherical harmonics Ylm, where
l andm are called the degree and the order respectively. The

Fig. 2. Left: the cortical thickness defined on mesh vertices
are rounded to the closest voxel. Right: Eigenfunction ex-
pansion with degree 22 and 22 roots. Only the masked brain
region is shown. The representation can fill out voxels where
cortical thickness is not defined.

explicit form for spherical harmonics is given in [5]. The
eigenvalues are μlm = l(l + 1) for l = 0, 1, 2, · · · . The first
equation can be written as

r2g′′ + 2rg′ + [r2λ − l(l + 1)]g = 0. (5)

If we define a new variable g = r−1/2G, we can transform
the equation to

r2G′′ + rG′ + [r2λ − (l +
1

2
)2]G = 0.

This is the scaled version of the Bessel equation and the only
bounded solution at the origin is given in terms of the Bessel
function of the first kind asG(r) = Jl+ 1

2

(
√

λr). The solution
to (5) is given by

g(r) = r−1/2Jl+ 1

2

(
√

λr) ∝ Sl(
√

λr), (6)

where Jl+ 1

2

is the Bessel function of the first. The solution is
proportional to the spherical Bessel function Sl defined as

Sl(x) =

√
π

2x
Jl+1/2(x).

The first term of the spherical Bessel function is

S0(x) =
sin x

x
.

Other terms are obtained recursively from

Sl+1(x) = −S′
l(x) +

l

x
Sl(x).

Few other terms are

S1(x) = −cosx

x
+

sin x

x2
,

S2(x) =
sin x

x
− 3 cosx

x2
+

3 sinx

x3
.
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Fig. 3. (a) Cortical thickness usually ranges from 2 to 6 mm.
(b) Eigenfunction expansion with degree k = 22 and j = 5
number of roots. (c) Eigenfunction expansion with k = 10
and j = 22.

In the computer implementation of the spherical Bessel func-
tion, one may need to define Sl(0). However, the built-in
spherical Bessel functions in most computer programs such
as MATLAB cause the singularity at x = 0. Hence we need
to define Sl(0) explicitly. Using the l’Hospital’s rule, we have
S0(0) = 1 and S1(0) = 0. Then using the l’Hospital’s rule
iteratively, we have

lim
x→0

Sl+1(x) = − lim
x→0

S′
l(x) + l lim

x→0
S′

l(x) = 0 for l ≥ 1.

Since the solution should satisfy the boundary condition
(3), we should have Sl(

√
λ) = 0. We order the roots of the

spherical Bessel function as

0 <
√

λl,1 <
√

λl,2 <
√

λl,3 < · · · .

For the 0-th degree, the roots are trivially given as
√

λ0,n =
nπ. All higher roots are numerically estimated.
Multiplying the spherical Bessel functions and the spher-

ical harmonics together, the eigenfunctions to (2) are then
given by

Zlmn(r, θ, ϕ) = Sl(
√

λlnr)Ylm(θ, ϕ).

Figure 1 shows the representative basis sampled in the cube
[−1, 1]3 at the cross section p2 = 0. These eigenfunctions
from a basis within a solid sphere of radius 1. Then any func-
tion f ∈ L2(M), the space of square integrable functions,
can be expanded as

f(r, θ, ϕ) ≈
k∑

l=0

l∑
m=−l

j∑
n=1

βlmnZlmn(r, θ, ϕ).

The expansion is truncated at the degree l = k and with n = j

roots.

3. ITERATIVE RESIDUAL FITTING ALGORITHM

Previously the coefficients of spherical harmonic series ex-
pansion have been estimated using the least squares method

by solving the system of linear equations [5] [10] [14]. For a
cortical surface mesh with N vertices, we need to simultane-
ously solve N linear equations and, in turn, invert an N × N

matrix. For cortical surface meshes, N can easily reach up
more than 700000 and it will not fit most computer memories.
To address this computational bottleneck, we have developed
the iterative residual fitting algorithm [5] that divide the ex-
tremely large linear problem into manageable small subset of
linear problems.
Let pi = (ri, θi, ϕi) be the mesh vertices where the corti-

cal measurements f are given. We vectorize the measurement
as

f = (f(p1), · · · , f(pN )).′

Let Zl,·,n be the N × (2l + 1) submatrix of basis given by

Zl,·,n =

⎡
⎢⎣

Zl,−l,n(p1) · · · Zl,l,n(p1)
...

. . .
...

Zl,−l,n(pN ) · · · Zl,l,n(pN )

⎤
⎥⎦ .

Denote the matrix of all basis corresponding to the l-th degree
as Zl = [Zl,·,1, · · · ,Zl,·,j]. Define the vector of coefficients
corresponding to Zl as

βl = (βl,−l,1, · · · , βl,l,j)
′.

Then we iteratively estimate the coefficients of low degrees to
high degrees using the iterative algorithm.

Algorithm 1 Iterative Residual Fitting.

1. l ← 0.

2. r ← f .

3. β0 ← (Z0Z0)
−1

Z
′
0f .

4. l ← l + 1.

5. r ← r − Zl−1βl−1.

6. βl ← (ZlZl)
−1

Z
′
lr.

7. If l ≤ k, go to Step 4.

4. 3D RESAMPLING OF 2D CORTICAL DATA

Among various cortical measures, we have used the cortical
thickness to demonstrate the proposed method. High reso-
lution magnetic resonance images were obtained using a 3-
Tesla GE SIGNA scanner. The collected images went through
intensity nonuniformity correction [15]. A supervised neu-
ral network classifier was used for tissue segmentation [11].
Subsequently a deformable surface algorithm was used to ob-
tain both the inner and the outer cortical surfaces that bound
gray matter [13]. The cortical thickness is then defined as the
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Fig. 4. Relative error plot of eigenfunction expansion for var-
ious number of degrees and roots. Yellow dots are the errors
for varying number of degrees for the fixed number of roots
j = 5. Red (blue) dots are the errors for varying number of
roots at the fixed degree k = 20 (10). As expected, the er-
ror plots show the increasing the number of degrees and roots
increases the accuracy.

distance between the two surfaces along the vertices of the
cortical mesh (Figure 3).
Since the brain surfaces can not be contained in a ball

of radius 1, we have scaled the mesh coordinates to be con-
tained in the ball. Then we have performed the eigenfunction
expansion. As the degree and the number of roots increases,
the expansion should be able to represent more detailed corti-
cal pattern. Taking the given cortical thickness as the ground
truth, we have computed the average relative error between
the ground truth and the representation (Figure 4). Increasing
the number of roots and degrees decreases the discrepancy be-
tween the representation and the ground truth. Since there are
so many empty voxels where cortical thickness is not defined
(Figure 2), the effect of the eigenfunction expansion is more
like low-pass filtering.
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