

Localizing functional regions of interest based on responses to dynamic naturalistic stimuli

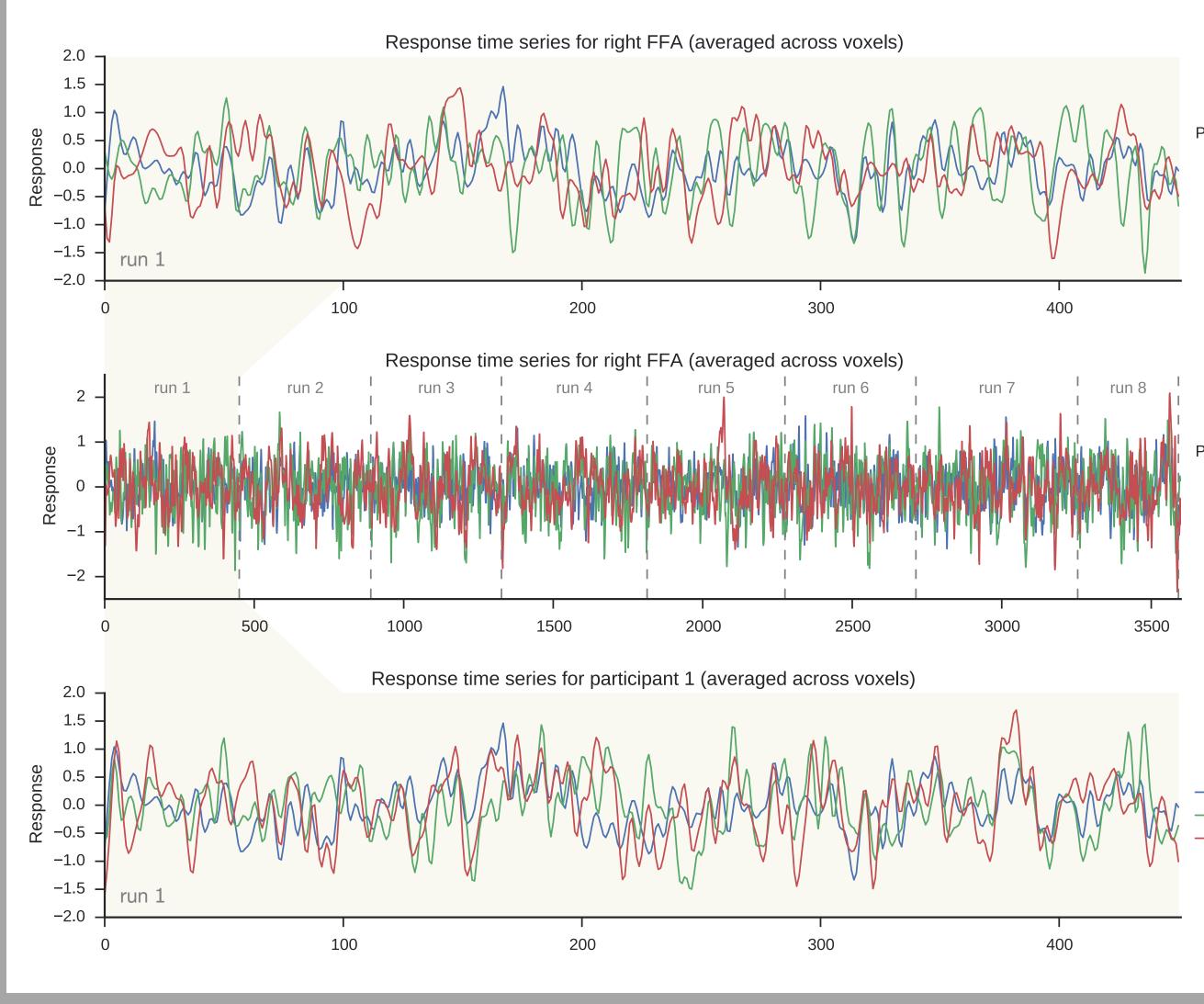
Center for

Introduction

Functional regions of interest (ROIs) are typically localized by contrasting responses to several classes of controlled stimuli (e.g., faces, houses).¹ However, the stimulus features driving these localized responses may also be embedded in rich, naturalistic stimuli, albeit in a more complex way. Dynamic movie stimuli have been shown to drive neural responses that are consistent across participants and encode extensive perceptual and semantic information.^{2,3}

Hypothesis: If stimulus features driving functional localization are embedded in naturalistic stimuli, a classification algorithm should be able to assign voxels to functional ROIs based on their response profiles to a movie stimulus.

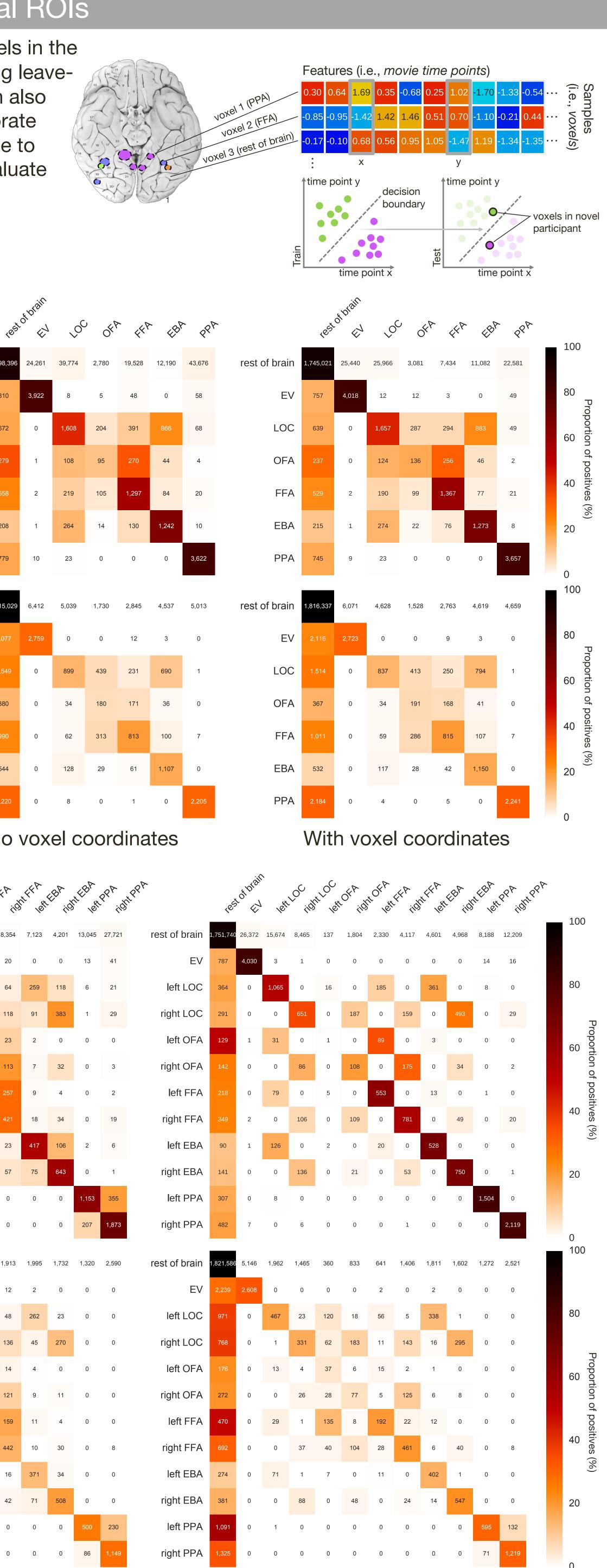
Data


fMRI data collected during naturalistic stimulation and functional localizers were obtained from two extensions of the *studyforrest* project^{4,5} (publicly available from openfmri.org, datalad.org, and studyforrest.org):

- 15 right-handed participants (mean age 29.4 years, 6 female)
- 3T fMRI, 2.0 s TR, 3.0 mm isotropic voxels (resliced to 2.5 mm)
- 3,599 time points (TRs) of audiovisual movie-viewing (Forrest Gump, German language) divided into 8 runs
- 123,910 voxels (SD = 2,718) per participant in whole-brain mask for a total of 1,858,654 voxels across participants

Six functional ROIs were obtained by contrasting responses to conventional localizer stimuli presented in a block design⁵:

ROI	Total voxels	Mean ± SD voxels	Omissions
Early visual cortex (EV)	4,851	323 ± 167 (per participant)	2 (out of 15)
Lateral occipital complex (LOC)	3,809	254 ± 124	1
Occipital face area (OFA)	801	53 ± 43	4
Fusiform face area (FFA)	2,285	152 ± 73	1
Extrastriate body area (EBA)	1,869	125 ± 64	0
Parahippocampal place area (PPA)	4,434	296 ± 105	0
Rest of brain	1,840,605	$122,707 \pm 2,523$	0


Movie data were motion-corrected, whole-brain masked, normalized to a studyspecific group template, detrended (3rd-order polynomial), low-pass filtered (cutoff: 0.1 Hz), and z-scored per voxel (within runs):

Samuel A. Nastase, J. Swaroop Guntupalli, James V. Haxby, Yaroslav O. Halchenko Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

Classifying voxels into functional ROIs

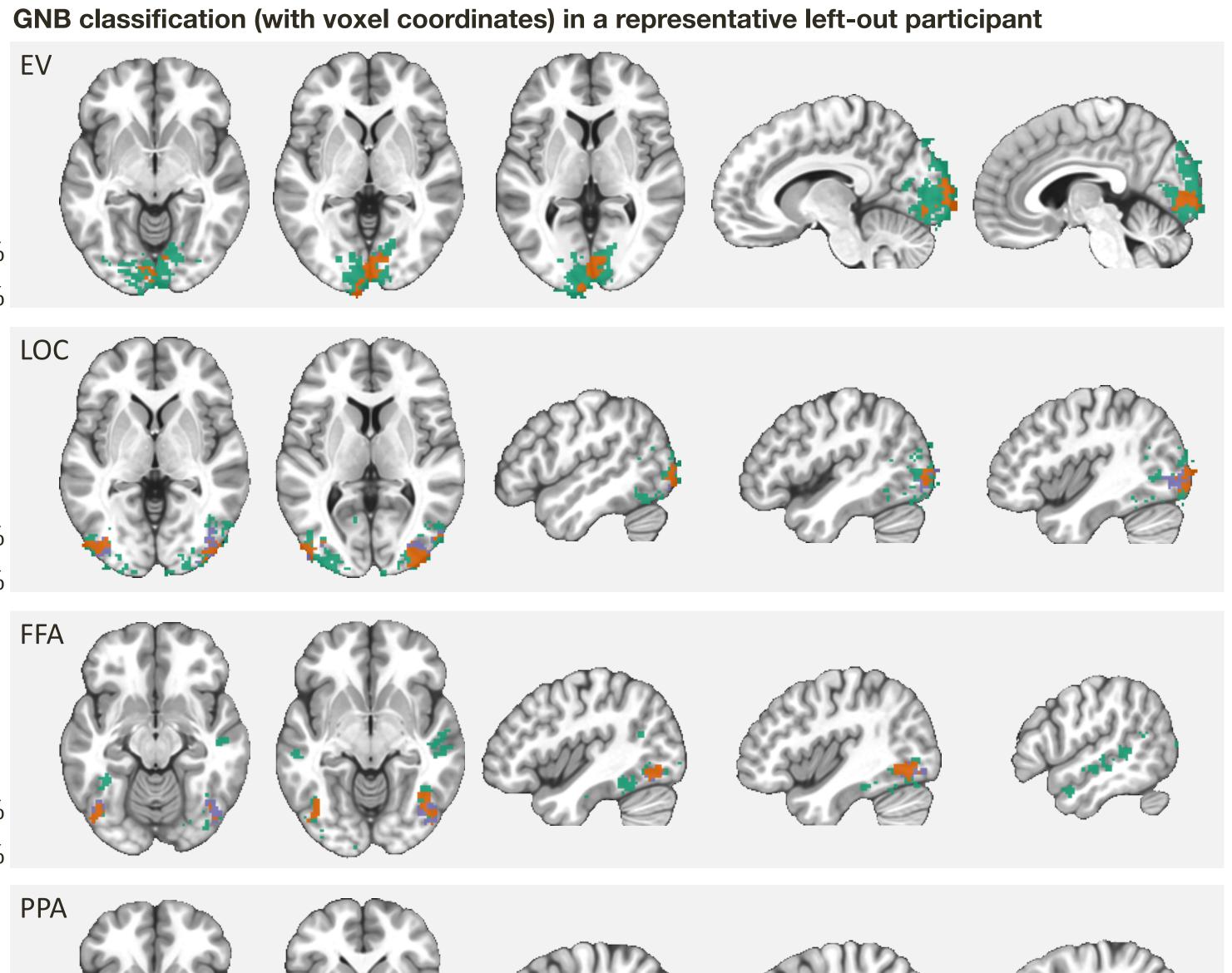
Two algorithms were used to classify all voxels in the brain according to functional ROI labels using leaveone-participant-out cross-validation. We can also append voxel coordinate features to incorporate anatomical information into the classifier. Due to highly unbalanced class frequencies, we evaluate classifiers using recall and precision.

true positives + false negatives true positives

true positives + false positives

									(⁶⁵			()°	O _X ,	< ^{<< '}	45	QQ.
Gaussian naive B	ayes (GN	IB)				rest	of bra	ain 1	,698,396	24,261	39,77	4 2	,780	19,528	12,190	43,676
Assumes independence between features (movie time points)				S	I	ΞV	810	3,922	8		5	48	0	58		
Prior is ratio of class frequencies							LC	DC	672	0	1,608	3 :	204	391	866	68
Accuracy: 92.01%, 94.54%							0	FA	279	1	108		95	270	44	4
Recall: 61.73%, 64.08%						F	FA	558	2	219		105	1,297	84	20	
Precision: 20.39%, 22.99%					FI	3A	208	1	264		14	130	1,242	10		
										·	204		14	100	1,272	
							PI	PA	779	10	23		0	0	0	3,622
Stochastic gradie	ent desce	ent (SG	i D)		rest	of bra	ain 1	,815,029	6,412	5,039	9 1	,730	2,845	4,537	5,013
Hinge loss and L2 regularization approximates linear SVM Samples are weighted according to class frequencies						I	ΞV	2,077	2,759	0		0	12	3	0	
							DC	1,549	0	899		439	231	690	1	
Accuracy: 98.08%, 98.15%							0	FA	380	0	34		180	171	36	0
Recall: 46.28%, 46.67%						F	FA	990	0	62	:	313	813	100	7	
Precision: 34.11%, 34.79%						EI	3A	544	0	128		29	61	1,107	0	
							PI	PA	2,220	0	8		0	1	0	2,205
								1	NO Y	VOX		00	orc	dina	tes	
		ć	f brain		о ^{с,}	VOC	4P	OFA	LEFP id	. FHP	BA	EBA	opp	PPA		
	-	1est	E)	left		IL IST	ંત્યું				indi		ι [×] č	Shi		_
GNB with lateralized ROIs	rest of brain	1,697,415 2	24,160	41,947	3,289	638	1,829	10,883	8,354	7,123	4,201	13,045	27,72	1	rest of I	brain 1.
Accuracy:	EV	814	3,931	7	1	0	5	19	20	0	0	13	41			EV
91.86%, 94.90%	left LOC	368	0	873	105	2	70	113	64	259	118	6	21		left	LOC
Decelly	right LOC	311	0	433	235	5	108	96	118	91	383	1	29		right	LOC

/-		EV	814	3,931	7	1	0	5	19	20	0	0	13	41	EV
	Accuracy: 91.86%, 94.90%	left LOC	368	0	873	105	2	70	113	64	259	118	6	21	left LOC
		right LOC	311	0	433	235	5	108	96	118	91	383	1	29	right LOC
	Recall: 47.75%, 58.92%	left OFA	128	1	18	13	0	20	49	23	2	0	0	0	left OFA
	Precision:	right OFA	155	0	20	59	5	47	106	113	7	32	0	3	right OFA
icipants — 1 — 2 — 3	13.50%, 17.96%	left FFA	203	0	57	15	3	32	287	257	9	4	0	2	left FFA
		right FFA	375	2	73	63	0	81	330	421	18	34	0	19	right FFA
		left EBA	76	1	90	9	0	4	33	23	417	106	2	6	left EBA
		right EBA	134	0	109	50	0	13	20	57	75	643	0	1	right EBA
		left PPA	304	0	7	0	0	0	0	0	0	0	1,153	355	left PPA
		right PPA	496	10	29	0	0	0	0	0	0	0	207	1,873	right PPA
	SGD with	rest of brain	1,819,731	5,403	2,495	1,562	354	868	642	1,913	1,995	1,732	1,320	2,590	rest of brain
icipants	lateralized ROIs	EV	2,206	2,624	0	0	0	0	7	12	2	0	0	0	EV
- 2	Accuracy:	left LOC	972	0	391	126	96	52	29	48	262	23	0	0	left LOC
— 3	98.25%, 98.38%	right LOC	730	0	79	298	75	159	18	136	45	270	0	0	right LOC
	Recall: 32.25%, 35.26%	left OFA	177	0	6	7	22	15	9	14	4	0	0	0	left OFA
		right OFA	267	0	8	23	35	63	10	121	9	11	0	0	right OFA
	Precision: 26.42%, 30.38%	left FFA	438	0	22	7	96	28	104	159	11	4	0	0	left FFA
		right FFA	681	0	9	25	35	101	75	442	10	30	0	8	right FFA
ROIs		left EBA	275	0	46	11	2	3	9	16	371	34	0	0	left EBA
right FFAright PPA		right EBA	371	0	10	71	1	25	3	42	71	508	0	0	right EBA
- EV		left PPA	1,088	0	1	0	0	0	0	0	0	0	500	230	left PPA
I		right PPA	1,379	0	1	0	0	0	0	0	0	0	86	1,149	right PPA
								.P.,	- 4 -						

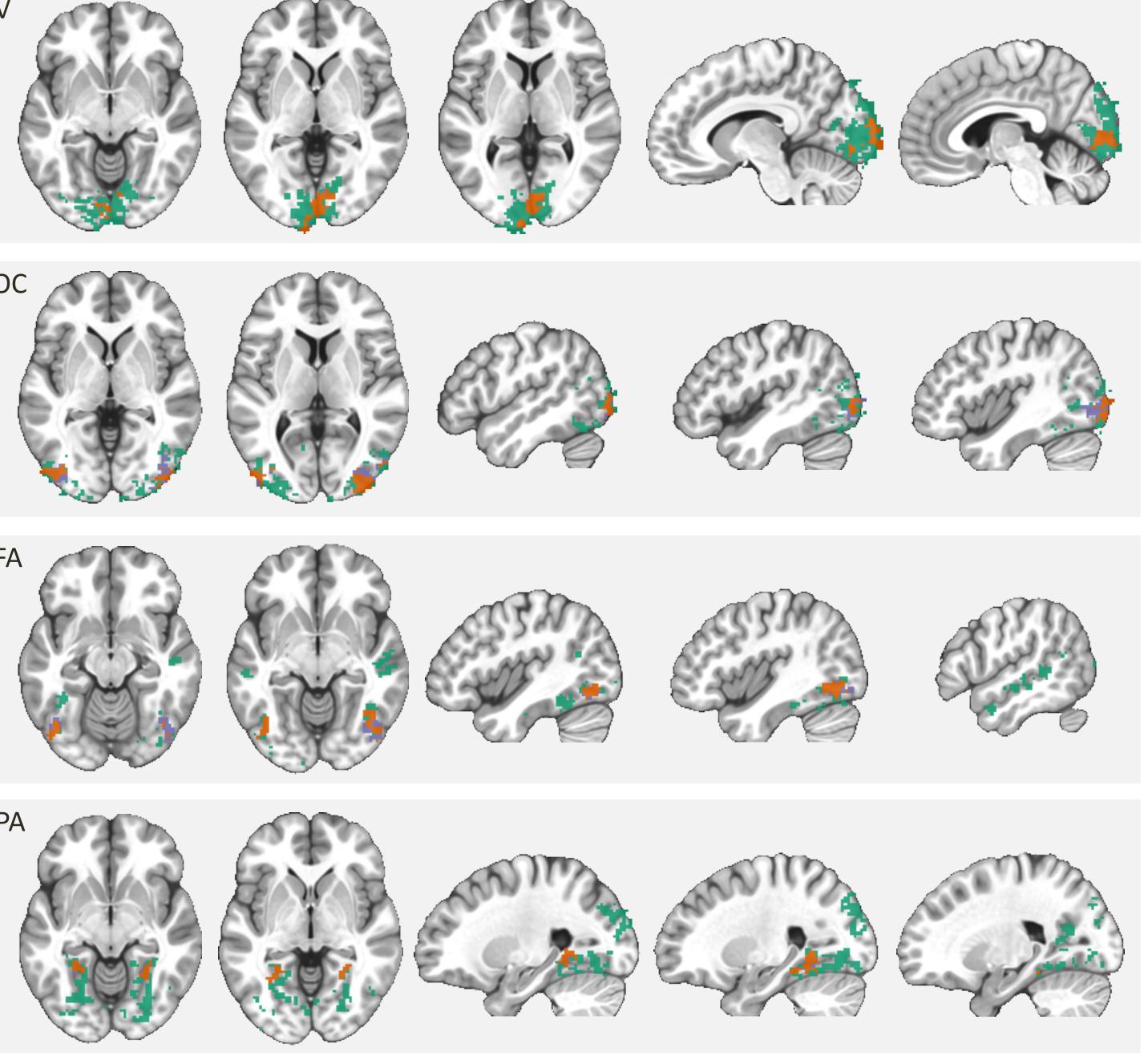

No voxel coordinates

With voxel coordinates

Mapping classifier predictions onto the brain

Classifier predictions for each functional ROI can be mapped onto the brain. False positives indicate voxels that were misclassified as belonging to a particular ROI based on their response profile.

Overall performance: Accuracy: 94.54% Recall: 64.08% Precision: 22.99%



Recall: 82.83% Precision: 13.63%

Recall: 43.50% Precision: 5.87%

Recall: 59.82%

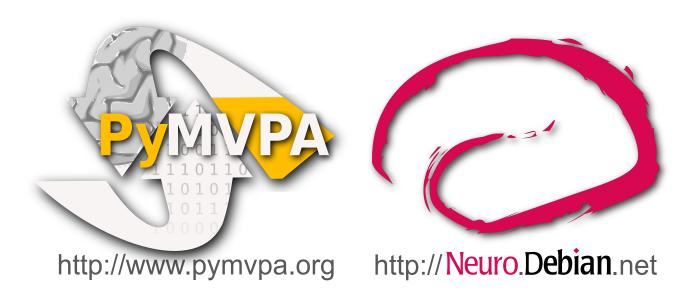
Precision: 14.50%

Recall: 82.48% Precision: 13.87%

Conclusions

stimuli in an automated fashion.

Classifier performance generalizes to novel participants without relying on anatomical features or anatomical alignment, but anatomical features improve classifier performance.


However, highly unbalanced class frequencies result in relatively low true positive rates and many false positives—overall classification accuracy is not a very useful evaluation metric in this context.

False positives (i.e., voxels with similar response profiles to the target ROI) are localized to potentially meaningful structures.

Unlike existing parcellation methods,⁶ here we start with well-established functional areas as targets to remove ambiguity in prescribing a functional role to a given parcel; cross-validation to novel participants natively provides an assessment of the method's generalization across the population.

Future work may leverage more sophisticated (e.g., nonlinear) classification algorithms, incorporate additional multimodal features such as cortical surface curvature or structural and functional connectivity, and evaluate classifier generalization across scanning sites.

- Sciences of the United States of America. 107(25). 11163–1117(
- Cortex, 26(6), 2919–2934.
- Glasser, M. F., Coalson, T., Robinson, E., Hacker, C., Harwell, J., Yacoub, E., ... Van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature. 536. 171-178.

- True positive (hit)
- True negative (correct rejection)
- False positive (false alarm; Type I error)
- False negative (miss; Type II error)

Localized functional regions of interest can be recovered from neural responses to dynamic naturalistic

Kanwisher, N. (2010). Functional specificity in the human brain: a window into the functional architecture of the mind. Proceedings of the National Academy of ., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634–1640 Guntupalli, J. S., Hanke, M., Halchenko, Y. O., Connolly, A. C., Ramadge, P. J., & Haxby, J. V. (2016). A model of representational spaces in human cortex. Cerebral nöfer, N., Kottke, D., Iacovella, V., Sengupta, A., Kaule, F. R., ... Stadler, J. (2016). A studyforrest extension, simultaneous fMRI and eve gaze Sengupta, A., Kaule, F. R., Guntupalli, J. S., Hoffmann, M. B., Häusler, C., Stadler, J., & Hanke, M. (2016), A studyforrest extension, retinotopic mapping an

samuel.a.nastase.gr@dartn