
Each representational model was tested using Spearman correlation in 10 mm radius 
surface-based searchlights.
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How do we understand the actions of others? The observer must extract behaviorally relevant 
information—such as an agent’s goals and their social implications—from complex 
spatiotemporal patterns of visual input1. Action understanding relies on multiple hierarchically 
organized stages of processing and re-representation to disentangle behaviorally-relevant 
features. Neural representational spaces supporting action understanding are organized such 
that actions that are similar along perceptual or semantic dimensions are located nearer to 
each other.
Question: What types of neural representations support action understanding, and at what 
stages of the processing pathway do they emerge?

Introduction Representational models

Design and preprocessing

Action category Sociality
Conversation Social
Intimacy Social
Teaching Social
Manufacturing Social
Eating Social
Dancing Social
Exercise Social
Cosmetics and grooming Social
Manual tool use Social

Action category Sociality
Cooking Nonsocial
Gardening Nonsocial
Arts and crafts Nonsocial
Musical performance Nonsocial
Eating Nonsocial
Dancing Nonsocial
Exercise Nonsocial
Cosmetics and grooming Nonsocial
Manual tool use Nonsocial
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12 participants viewed 90 unique 2.5 s action clips in a condition-rich rapid event-related 
design2 in two 1 hr sessions. Participants performed a semantic task in which they were 
intermittently asked which of two verbs best described the action in the preceding clip.

Image acquisition:
TR = 1 s, TE = 32 ms,
2.5 mm3 voxels.

Data were preprocessed 
using fMRIPrep3.

Searchlight analysisRegion of interest analysis

Conclusions
The geometry of observed action representation can be disentangled using representational 
models of visual, semantic, and social content. 
Transitivity, sociality, and verb semantics emerged as key dimensions of neural representation 
in downstream areas, such as LO and VT. These models captured a surprisingly large portion 
of variance in VT.
Static image stimuli and non-naturalistic tasks provide a limited view onto internal 
representational spaces. Dynamic, naturalistic stimuli provide complementary insights.
Using a rich variety of naturalistic stimuli, we can replicate several findings from the literature in 
a single data set.
The best-performing models (e.g., transitivity in LO) still only accounted for ~14% of variance 
in neural representation and only reached halfway to the noise ceiling—we can do better!
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Motion energy was computed using spatiotemporal 
Gabor filters at different positions, orientations, spatial and 
temporal frequencies in quadrature (6,555 channels per 
frame)8. Correlations between vectorized channel weights 
per stimulus were used to construct a motion RDM.

Gaze trajectories were measured in a separate cohort, median-filtered, 
interpolated across blinks, and downsampled. Euclidean distances 
between trajectories were used to compute a gaze RDM.

Two annotators manually assigned nonverb and verb labels to 
the 90 clip stimuli. Pre-trained 300-dimensional word embeddings 
from word2vec were assigned to each stimulus. Semantic 
embeddings were averaged per stimulus and cosine distances 
between embeddings was used to construct RDMs.

Each participant performed two multiple item arrangement 
tasks where they organized the stimuli according to transitivity
or sociality. Euclidean distances across subsets were used to 
compute RDMs.

Six representational models were constructed capturing visual 
features, semantic content, and behavioral judgments. motion

gaze

GLM with 90 regressors of interest, as well as 
head motion, framewise displacement, first 
five PCs from CSF (aCompCor).

Five anatomically-defined ROIs 
including three hubs of action 
observation network6:

early visual cortex (EV)
lateral occipitotemporal cortex (LO)
ventral temporal cortex (VT)
anterior intraparietal cortex (AIP)
ventral premotor cortex (VPM)

Surface-based search-
light hyperalignment4,5

was used to transform 
all data into a common 
response space based 
on a 1 hr movie session 
(Raiders of the Lost Ark).
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Multidimensional scaling for visualizing neural representational geometry.
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Evaluate each model in each ROI relative 
to noise ceiling, with permutation-based 
null distribution and bootstrap 
confidence intervals7.
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