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Abstract

& Object and face representations in ventral temporal (VT)
cortex were investigated by combining object confusability data
from a computational model of object classification with neural
response confusability data from a functional neuroimaging
experiment. A pattern-based classification algorithm learned
to categorize individual brain maps according to the object
category being viewed by the subject. An identical algorithm
learned to classify an image-based, view-dependent represen-

tation of the stimuli. High correlations were found between
the confusability of object categories and the confusability of
brain activity maps. This occurred even with the inclusion of
multiple views of objects, and when the object classification
model was tested with high spatial frequency ‘‘line drawings’’ of
the stimuli. Consistent with a distributed representation of ob-
jects in VT cortex, the data indicate that object categories with
shared image-based attributes have shared neural structure. &

INTRODUCTION

Neuroimaging studies of ventral temporal (VT) cortex
responses to objects have concluded variously in favor
of modular (Spiridon & Kanwisher, 2002; Kanwisher,
McDermott, & Chun, 1997), distributed (Carlson, Schra-
ter, & He, 2003; Cox & Savoy, 2003; Haxby et al., 2001),
and process-based (Gauthier, Skudlarski, Gore, & An-
derson, 2000; Gauthier, Tarr, Anderson, Skudlarski, &
Gore, 1999) accounts of visually based object recogni-
tion. Evidence for both the modular and distributed
hypotheses comes from the application of novel analyses
of the patterns of neural activity that result when viewing
objects. Although there is general agreement about the
locations of maximal responses to certain classes of ob-
jects in VT cortex, the analysis of brain activity patterns
has led to an active debate on the nature of the neural
representations that underlie these responses.

Diverging conclusions about the distributed versus
modular nature of object representations in VT cortex
have been reached by researchers using reasonable, but
nonconvergent, quantifications of modular/distributed
codes. Resolving a debate about the nature of object rep-
resentations in the cortex requires a quantitatively pre-
cise description of the pattern parameters that define the
different hypotheses. A more precise definition of ‘‘dis-
tributed’’ versus ‘‘modular’’ patterns of activation will
give us a standard for determining the degree to which
individual patterns vary on this dimension. It will not,
however, help us understand why certain areas are more
or less modular/distributed or how object category rep-
resentations are organized. We argue here that this

requires a computational analysis of the structure of
object categories that can account for the structure of
the brain activity patterns. The representational pa-
rameters of this analysis can constrain hypotheses about
the kinds of representations that may underlie the neu-
ral response patterns.

One difficulty in interpreting pattern-based data in
the current debate is that ‘‘modular’’ and ‘‘distributed’’
have been characterized often as qualitatively discrete
kinds of representations rather than as the endpoints of
a continuous variable—with partially distributed codes
lying between these extremes. The variable connecting
modular with distributed is ‘‘voxel information con-
tent.’’ At the modular extreme, each voxel carries infor-
mation relevant for only one category of objects. At the
distributed extreme, all voxels carry information for all
categories. In between, voxels vary in the quality of
information they carry about different object categories
(e.g., a voxel might contribute to classification accuracy
for most, some, or no other object categories).

We propose that understanding partially distributed
codes in the context of stimulus parameters is the key
to linking neural responses with the physical world they
represent. This is because distributed and modular
patterns of neural responses provide clues for the more
interesting question of how we represent and recognize
objects neurally. The theoretical viewpoints suggested
by modular versus distributed codes provide predictions
about the how distributed individual categories of ob-
jects should be and about which categories should share
voxels.

What does a distributed activity pattern indicate about
the representation of objects? According to the object-1The University of Texas, 2Princeton University
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form topography model, the representations of faces
and other objects are widely distributed and overlapping
because VT cortex contains a topographically organized
representation of the attributes that underlie object and
face recognition (Haxby et al., 2001). This model pre-
dicts, therefore, that voxel information content should
be shared or distributed as a function of the shared at-
tributes of objects. Similar object categories would share
more voxels than dissimilar categories because the
objects in these categories share more attributes. Alter-
natively, dissimilar categories share few attributes and
would appear ‘‘modular,’’ because their encodings will
involve mutually exclusive sets of voxels. By this ac-
count, the modularity of some preferred areas does not,
in and of itself, invalidate the object-form topography
hypothesis.

In this article, our first goal was to employ a pattern-
based classification analysis to generate data on the
confusability of the neural response profiles for pairs of
object categories. The pattern confusability data provide
a measure of shared neural resources among categories.
These data set a standard for evaluating an analogously
derived computational assessment of object category
structure and add to the single category identification
accuracy measures and summary contrast data reported
in previous works (Spiridon & Kanwisher, 2002; Haxby
et al., 2001).

In the process, we replicate previous findings on mod-
ular versus distributed representations in VT cortex that
have been interpreted as divergent, using data from a
single experiment. Previous studies have employed dif-
ferent operational definitions of distributed/modular and
have also defined the extent of preferred regions in
different ways. To validate our methods, we report the
primary comparisons examined in these studies using a
consistent set of operational definitions applied to a
single data set. The replication component of this study
is particularly important because it serves to illustrate the
relatively convergent nature of the functional neuro-
imaging data in the context of the less convergent
operational definitions of the theoretical constructs.

Our second goal was to implement a computational
analysis of object recognition that operates on the stim-
uli from the fMRI experiment and to evaluate the rela-
tionship between the neural responses and the stimulus
structure. The use of a computational model of stimu-
lus structure in conjunction with a computational model
of functional neural activity expands the repertoire of
tools available to researchers for probing the neural rep-
resentations that underlie object perception. Previous
studies show that it is possible to classify brain scans
by visual object category with a high level of accuracy
(Carlson et al., 2003; Cox & Savoy, 2003; Spiridon &
Kanwisher, 2002; Haxby et al., 2001) but stop short of
linking the neural classification to predictions generated
by the physical structure of the objects themselves. To
the best of our knowledge, the present study is the first

to combine an analysis of stimulus structure with an
analysis of neural activation patterns from a functional
neuroimaging study (although, for combined analysis of
the perceptual and neural structure of objects, see
Edelman, Grill-Spector, Kushnir, & Malach, 1999). This
stimulus analysis brings the previously divergent neuro-
imaging results under a single framework that accom-
modates most of the previous findings and offers new
insight into the reasons why object category responses
vary in the extent to which they are distributed.

RESULTS

In addressing the first goal, as noted previously (Spi-
ridon & Kanwisher, 2002), the existence of partial
responses by brain areas that prefer certain object
categories to other (nonpreferred) object categories is
open to 2 interpretations. Either the nonpreferred area
contributes to the representation of the object or the
activation reflects an epiphenomenal engagement of
the visual system in response to any potentially relevant
stimulus (Spiridon & Kanwisher, 2002). To differentiate
these alternatives, we used the standard of whether the
inclusion of additional voxels to the preferred and non-
preferred areas increased the accuracy with which ob-
jects can be classified based on the brain activation
patterns. This is a strong and conservative test of voxel
contribution, because even if the preferred area contains
sufficient information for categorizing an object, a re-
dundant representation in the nonpreferred area may be
relevant. Redundant representations may simply encode
other aspects of the stimulus that are needed depending
on the perceptual demands of the task.

We applied pattern-based classification analyses to
determine the discriminability of the brain-map patterns
available from a previously published study (Haxby et al.,
2001). Participants in this study viewed 8 categories of
objects (faces, houses, cats, shoes, chairs, scissors, bot-
tles, and scrambled objects). Pattern-based classification
analyses treat brain scans as patterns of interdepen-
dent voxels, rather than as collections of independent
voxels (see also Carlson et al., 2003; Cox & Savoy, 2003;
Petersson, Nichols, Poline, & Holmes, 1999). They also
provide a quantitative measure of the separability of
brain scan data in the context of the original experimen-
tal conditions (Phillips, Moon, Rizvi, & Rauss, 2000;
Petersson et al., 1999). Pattern-based classification analy-
ses address the question, ‘‘Given a functional brain map,
what is the likelihood that the pattern of activa-
tion corresponds to a brain state indicating Condition A
versus Condition B?’’ This translates into determining
the likelihood that a particular brain activity map in-
dicates, for example, that a subject is looking at a face
or house. This is a kind of ‘‘brain reading’’ (Cox &
Savoy, 2003; Thomas, VanHulle, & Vogels, 2001; Edelman
et al., 1999), where the discrimination index measures
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success in determining the condition of origin for the
brain map.

The goal of the analysis was to determine the pairwise
‘‘neural discriminability’’ of the object categories using
the brain scans collected while a subject viewed different
categories of objects. We applied the procedure to the
fMRI data from each subject separately (cf. Haxby et al.,
2001) and report the discriminability results averaged
over the subjects. Odd and even runs of trials served al-
ternately as the training and testing sets to yield 2 mea-
sures of performance for each subject on each pair of
object categories. For simplicity, we describe the analysis
for the face–house discrimination. The other object
category pairs were treated analogously.

We proceeded as follows. First, half of brain maps
from face condition and half of the maps from the house
condition (i.e., the training set maps) were submitted to
a PCA. This provided a multidimensional space of the
scans defined by orthogonal axes or PCs. These axes are
ordered by the amount of variance each explains in the
data. This variance includes, but is not limited to, voxel
activation changes that are due to changes in the ex-
perimental condition. Because PCA was applied to brain
scans, individual PCs are themselves interpretable as
brain scans that can be projected back onto the anato-
my of the subject and viewed. Figure 1 shows a PC from
the neuroimaging data projected back onto the anato-
my of a subject.

The next step was to determine the ‘‘positions’’ of
individual brain maps in the PCA space by computing
their coordinates on each of the PCs. Coordinates
represent the similarity of individual brain scans to the
PCs. These coordinates can contain information about
object category contrasts. Information about a category
contrast might, for example, be seen in the opposition
of positive versus negative coordinate values for scans
from the two categories. Figure 1 shows an example of
this kind of PC-based contrast for the face and house
categories. Scans taken while this subject viewed houses
tend to have negative coordinates on this PC, whereas
scans taken while the subject viewed faces tend to have
positive coordinates. To illustrate the activation profile
represented by this PC, Figure 1 shows the areas that are
relatively more activated for faces (orange) versus the
areas that are less activated for faces (blue). The reverse
pattern occurs for houses, with more active areas in blue
and less active areas in orange.

The third step was to measure formally the discrimi-
nability of scans from the two categories. To do this,
linear discriminant classifiers were trained to classify
scans from the two object categories using the coordi-
nates of the scans in space. Classification accuracy was
tested using the scans from the test set. Finally, we
created an ‘‘optimal classifier’’ by evaluating classifica-
tion accuracy on individual PCs and combining the most
accurate PCs into a single classifier. Discrimination
performance was measured with the signal detection

measure of d0, which penalizes misclassifications that
might reflect a model response bias (e.g., the model
classifying all scans as houses, which would lead to 100%
correct house classifications and 0% correct face classi-
fications). Thus, the measure assesses the separability of
the 2 classes of scans by combining classification success
on both categories of objects simultaneously.

Brain Scan Discriminability by Category

The moderate to high classification accuracy for all pos-
sible pairs of object categories (Table 1) replicates the
performance levels reported previously for these data
using a correlation-based classification algorithm with
individual category identification measures (Haxby et al.,
2001). Discrimination of the object category pairs was
not homogeneous, F(27,135) = 6.62, p < .0001. Consis-
tent with previous work (Spiridon & Kanwisher, 2002;
Haxby et al., 2001), houses and faces were discriminated
most accurately. The range of d0 we found for category
pair discriminations indicates sufficient variation to make
use of the confusability matrix in Table 1 as a standard
for evaluating an analogously derived computational as-
sessment of object category structure.

The PC displayed in Figure 1 achieved a high degree
of separation between face and house brain maps (d0 =
3.3). This map contrasts the activation areas for houses
and faces, with the contrasted regions approximating
the fusiform face area and parahippocampal place area,
respectively.

Voxel Sharing by Category

To determine the extent to which voxels share in the
coding of object representations, we compared classifi-
cation accuracy for all available voxels with accuracy
using voxels from preferred and nonpreferred areas.
For all 8 categories of objects, classification accuracy
was better for the all-voxel condition than for either
the preferred on nonpreferred areas [mean d0

all voxels=
2.30, mean d0

preferred = 1.95, mean d0
nonpreferred = 1.96,

F(1,10) = 17.1, p < .01, see Table 2]. When we included
all 28 pairs of category discriminations (i.e., face vs.
house, face vs. cat, etc.), 23 of 28 comparisons yielded
their best performance in the all-voxel condition. Thus,
voxels from across VT cortex improve classification
accuracy over and above that achievable with either
the preferred or the nonpreferred regions.

Notwithstanding, discrimination using only the pre-
ferred or nonpreferred regions was still highly accurate
(mean d0

preferred = 1.95, mean d0
nonpreferred = 1.96). In

collapsing across the 8 categories of objects, there was
no significant difference in classification accuracy be-
tween the preferred and nonpreferred regions. How-
ever, for 3 categories of objects this pattern differed.
For categorization of the houses versus other catego-
ries, there was a trend toward more accurate classifica-
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tion with the preferred area (mean d0
preferred = 2.76,

mean d0
nonpreferred = 2.03), whereas categorization of

the chairs and scrambled stimuli tended to be more
accurate with the nonpreferred regions (Table 2).

Finally, using only the preferred region for faces, we
measured the discrimination index for all possible pairs
of small objects (chair, shoe, scissors, and bottles) (cf.,
Spiridon & Kanwisher, 2002). Consistent with a modular
organization of faces in VT cortex, discrimination for
small objects was less accurate (d0 = .77) than the face
area’s ability with comparisons involving faces (d0 =
1.63). Using the preferred house area, small object

discrimination was likewise less accurate (d0 = 1.21)
than the house area’s ability with comparisons involving
houses (d0 = 2.30). These data fall between previous
findings of chance (Spiridon & Kanwisher, 2002) and
good (Haxby et al., 2001) performance for face and
house areas with object discrimination. Differences be-
tween the definitions of the areas may account for the
variability of this finding. Our data suggest that although
there is information for object comparisons in the face
and house areas, the areas are better suited to discrim-
inations from their respective preferred object classes
(Spiridon & Kanwisher, 2002). This replicates, at least

Figure 1. Example of a PC

that separates faces and houses

(d0 = 3.3). Face area in orange

and house area in blue.
Intensity indicates the

weighting of each voxel on

this component. Data are
shown on 4 contiguous

axial slices.
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qualitatively, findings used in support of a modular
account of object representation in VT cortex (Spiridon
& Kanwisher, 2002).

The data from the first two analyses indicate that
highly accurate classification can be achieved by using
the statistical structure of brain activity patterns with a
scan-by-scan ‘‘brain-reading’’ approach (Cox & Savoy,
2003; Thomas et al., 2001; Edelman et al., 1999). Accu-
racy was highest when all available voxels contributed to
the classification, rejecting the strictest definition of
modular encoding for all 8 categories. Voxels additional
to those in the preferred areas have a tangible and
quantifiable role to play in representing objects. These
findings are also consistent with the previous data
showing that the preferred regions for faces and houses
may be impaired at classifying nonpreferred objects
(Spiridon & Kanwisher, 2002).

In summary, we replicate previous findings that have
been interpreted to support a distributed encoding of
objects. Specifically, both preferred and nonpreferred
regions can provide good, and in some cases, compara-
ble, information for object classification. We also repli-
cate, qualitatively, previous findings that have been
interpreted to support a modular encoding of objects.
Specifically, preferred regions for faces and houses are
not well suited to object classifications that do not
involve faces and houses, respectively. The replication
of this constellation of findings within a single data set
validates our methods and illustrates the convergence of

data on this issue in the context of the somewhat less
convergent operational definitions of the theoretical
constructs.

Next, we measured the discriminability of the object
categories themselves. This extends previous work
(Carlson et al., 2003; Cox & Savoy, 2003; Spiridon &
Kanwisher, 2002; Haxby et al., 2001) by generating
predictions about the degree to which individual cate-
gories of objects could share voxels effectively in a
distributed neural representation, assuming a visually
based encoding of the structure and features of the
stimuli.

Stimulus Similarity by Category

The structure of the stimulus categories was analyzed
using methods identical to those applied in the brain
scan discriminability analysis. Optimal classifiers were
created for all possible pairs of object categories. These
classifiers operated on the PC coordinates derived from
the stimuli presented to subjects in the fMRI experi-
ment. This representation is the basis of many current
computational models of face recognition (Petersson
et al., 1999). These models typically make use of 2-D
view-based representations, which can be used to
recognize objects from multiple viewpoints when the
model training includes examples of varying views of
the objects (Riesenhuber & Poggio, 2000). These view-
based models are consistent with neurophysiological

Table 1. Classification Accuracy for Brain Maps and Stimuli

Face House Cat Chair Shoe Scissors Bottle Scramble

Face 3.47 1.79 3.00 2.67 2.58 2.22 3.08

House 4.52 3.39 2.18 2.86 2.69 2.89 2.62

Cat 4.08 2.85 2.18 2.34 2.09 2.31 2.88

Chair 4.08 4.52 1.61 1.73 1.55 1.23 2.07

Shoe 4.52 4.52 2.92 2.82 1.44 1.29 2.38

Scissors 3.97 4.52 2.81 2.89 3.55 1.19 2.15

Bottle 3.87 4.08 1.96 2.91 3.26 2.09 2.07

Scramble 3.73 4.52 3.17 3.97 4.52 3.26 1.49

Upper triangle = brain-map accuracy; lower triangle = stimulus category accuracy.

Table 2. Classification Accuracy with Preferred and Nonpreferred Areas

Face House Cat Chair Shoe Scissors Bottle Scramble

All voxels 2.69 2.87 2.43 1.99 2.1 1.95 1.89 2.46

Preferred 2.32 2.76 1.94 1.55 1.78 1.71 1.58 1.97

Nonpreferred 2.30 2.03 2.04 1.85 1.82 1.69 1.69 2.27

In all cases, the all-voxel condition accuracy exceeds the preferred and nonpreferred accuracy.
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(Logothetis, Pauls, & Poggio, 1995; Perrett, Hietanen,
Oram, & Benson, 1992) and psychological (O’Toole,
Edelman, & Bülthoff, 1998; Tarr, Williams, Hayward, &
Gauthier, 1998; Logothetis, Pauls, Bülthoff, & Poggio,
1994) data on object and face recognition. As imple-
mented here, the PCA-based model assumes invariances
that can be achieved with 2-D affine transformations, or
alternatively, in a more biologically plausible fashion with
hierarchical models (cf., Riesenhuber & Poggio, 1999,
2000). This assumption was met for this stimulus set, as
the objects were sufficiently aligned to achieve highly
accurate classification without these transformations.

The results of the simulation indicated that the ob-
ject categories used in the fMRI experiment, like the
brain scan categories, are highly, although not homo-
geneously, discriminable (see Table 1). As was seen for
the brain-map discriminations, faces and houses were
the categories discriminated most accurately. These data
add to previous findings (Spiridon & Kanwisher, 2002;
Haxby et al., 2001) a measure of how dissimilar objects
are within the categories tested. Thus, the data gener-
ate a prediction about the degree to which voxels for
individual pairs of categories should be shared given a
distributed encoding of the visual structure of objects.

Comparing Brain Scan and Stimulus
Similarity Profiles

The object-form topography model predicts that brain-
map response patterns to different categories of objects
should be distributed when the attributes needed to
represent the categories are shared. Brain maps
corresponding to different object categories should be
most discriminable, therefore, when the features need-
ed to represent them are not shared between the two
categories. We compared the confusability of the object-
stimuli and the brain scans by correlating the discrimi-
nation indices (d0) from the object category simulations
with the discrimination indices from the neural response
patterns. For the full set of object pair discriminations,
the relationship between the stimulus and brain scan
discriminability was moderately strong and statistically
significant (r = .42, p =.03, df = 26). Using average d0

for the 8 object categories, the correlation was .67 (df =
6, p = .07).

Visual inspection of the data indicated a marked
deviation from the stimulus–brain-map relationship only
for the scrambled controls and the cats. Removing these
two categories from the analysis increased the correla-
tion between brain map and stimulus discriminability to
.84, for all possible object discrimination pairs. This
explains 71% of the variance in the discriminability of
the stimuli and brain scans. For the data averaged across
categories, the correlation increased to r = .92, explain-
ing 85% of the variance.

Why do the correlations improve when the scrambled
controls and cats are removed from the analysis? For the
scrambled images, there is minimal form information
and so the cortical response may be noisy. It is less ob-
vious why the elimination of the cat stimuli increased
the correlation, although one explanation may be found
in a recent study that looked at fusiform gyrus response
to cat faces (Tong, Nakayama, Moscovitch, Weinrib, &
Kanwisher, 2000).

Object Representations Linking Brain-map
Structure to Stimulus Structure

The relationship between brain-map structure in VT
cortex and object category structure indicates that the
shared attributes of object structure, as defined by this
simple stimulus-based analysis, are ref lected in the
similarity of the patterns of brain responses to these
attributes. The stimulus analysis was carried out directly
on an image-based representation of the objects. This
raises the possibility that the relationship between ob-
ject structure and brain-map structure might be based
on low-level visual features. This ‘‘low-level visual’’
interpretation of VT cortex is not consistent with previ-
ous neuroimaging work showing similar responses to
objects over changes in viewpoint and across image
format changes (e.g., grayscale photographs and line
drawings). We show next that despite the relatively
‘‘low-level’’ nature of the image-based code, with appro-
priate experience, the object categorization model oper-
ates successfully across these changes and is therefore
consistent with these neuroimaging findings.

First, the stimuli we modeled (Haxby et al., 2001)
included images of objects taken from different view-
points (Figure 2). As seen in Table 1, the algorithm

Figure 2. Example chair
stimuli from neuroimaging

experiment and simulations

show the range of view

variations in the data set.
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successfully discriminated object categories across a
broad range of views. This is not surprising for a 2-D
image-based model when its experience includes exam-
ples of objects from diverse viewpoints (Riesenhuber &
Poggio, 2000). The view-based nature of the model, and
its ability to operate across viewpoint when the training
set includes a range of viewpoints, is consistent both
with psychological (O’Toole et al., 1998; Tarr et al., 1998;
Logothetis et al., 1994) data on object and face recogni-
tion and with neurophysiological data on the selectivity
of neurons in the inferotemporal cortex to objects and
faces (Logothetis et al., 1995; Perrett et al., 1992). The
object attributes detected in the view-based computa-
tional analysis are thus consistent with the view invariant
responses found in functional neuroimaging studies.

Second, there is evidence that VT cortex areas re-
spond to both grayscale and line drawing versions of
the object stimuli (Spiridon & Kanwisher, 2002; Ishai,
Ungerleider, Martin, Schouten, & Haxby, 1999). To test
the applicability of the present model to these data,
we carried out two additional simulations to test our
stimulus-based discrimination algorithm on spatial fre-
quency filtered (high-pass), ‘‘line-drawing’’ versions of
the original stimuli (Figure 3).

The first simulation was trained on the original gray-
scale images and tested on its ability to discriminate ob-
ject categories using high-pass images of the objects. We
counterbalanced the available stimuli to be certain that
during the test, the model was discriminating high-
pass images of stimuli not learned previously in their
grayscale versions (i.e., novel exemplars). To classify the

object categories correctly, therefore, general informa-
tion about the categories that transcends both the
stimulus set (individual pictures) and the low-level
features (grayscale–line vs. line drawings) must be
learned.

Object classification accuracy for the stimuli tested as
high-pass images remained good with an average d0 of
1.59. More importantly, the correlation between stimu-
lus and neural response discriminability across all pos-
sible pairs of objects remained strong (r = .57, p = .03,
df =13). In a second simulation trained with grayscale
and high-pass images, performance improved some-
what (d0 = 1.77), and the correlation between stimulus
and neural response discriminability increased slightly
(r = .63, p = .01, df = 13). The decline in performance
between the high-pass image and the grayscale classifi-
cation is consistent with fMRI data, indicating weakened
responses to line drawings by comparison to photo-
graphs (Spiridon & Kanwisher, 2002).

The relationship between brain-map and stimulus
confusability was maintained over changes in low-level
features. The features captured in the object classifica-
tion model are, therefore, consistent with those mea-
sured in neuroimaging studies.

DISCUSSION

The debate concerning the representation of objects in
VT cortex has focused on the issue of whether the
neural response patterns that result from viewing faces
and objects are modular or distributed. Less attention
has been paid to the nature of object representations
that are predicted by distributed versus modular activa-
tion patterns, and no attention has been paid to the
potential significance of partially distributed activation
patterns for representing objects. Rather than treating
neural activation patterns that are neither perfectly
modular nor perfectly distributed as ‘‘noise’’ or artifact,
we assume that the degree of overlap in these patterns
can contain important information about the nature of
object representations in cortex. To constrain the inter-
pretation of neural response patterns, we combined an
analysis of these partially distributed neural activation
patterns with a computational model of object recogni-
tion. The results are supportive of a ‘‘feature-based’’
representation of objects in VT cortex. Although the
exact nature of these features is unknown, in the con-
text of previous neurophysiological and computational
findings, the present data constrain the representation
in three ways.

First, a view-dependent, image-based representation
accounts well for the confusability of the neural re-
sponse patterns for objects and faces. Although more
complex or abstract representations are plausible, by
parsimony, this finding indicates that more complex
representations need not be invoked to account for

Figure 3. Examples of stimuli and high-pass-filtered versions of

these stimuli.
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the structure of the neural responses. Neurophysiolog-
ical studies support a hierarchical organization of vi-
sual processing that begins with retinotopic feature
analysis in early visual areas and proceeds to progres-
sively more complex, view-based object codes in the
inferotemporal cortex (Kobatake & Tanaka, 1994). View-
dependent cells can be pooled to recognized objects
independent of viewpoint, given experience with mul-
tiple views of the objects (Logothetis et al., 1995). The
mixture of view-selective and view-independent cells in
the inferotemporal cortex suggests that these codes
share neural space (Perrett et al., 1992). View-based ob-
ject classification models operate analogously. Although
these models represent relatively low-level view-specific
attributes that do not generalize across viewpoint, they
can achieve view independent performance through ap-
propriate experience.

The second representational constraint concerns
voxel sharing. If voxel sharing reflected the epiphe-
nomenal engagement of the visual system in response
to any potentially relevant stimulus, we would expect no
relationship between the confusability of the stimulus
categories and the confusability of the neural response
patterns. The present result is consistent, therefore, with
an unencapsulated, distributed coding of objects, in
which the physical properties of the object categories
are reflected, in kind, at the level of VT cortex. The
object-form topography hypothesis assumes a neural
encoding of object attributes that is distributed, because
it posits that VT cortex contains a representation of
objects in terms of their attributes or features. It fol-
lows, therefore, that object categories will share neural
space when they share common attributes.

Finally, these data help to separate the concept of
representational types (object-form topography, Haxby
et al., 2001; view-based, Riesenhuber & Poggio, 1999;
Poggio & Edelman, 1990; structural, Biederman &
Gerhardstein, 1993; intermediate complexity features,
Ullman, Vidal-Naquet, & Sali, 2002) from the concept of
pattern response types (modular, distributed). The un-
derlying assumptions of the object-form topography
hypothesis are consistent with a distributed coding
in principle, but with a wide range of response types in
practice. The principle of distributed encoding stands
because it relies on the encoding of objects in terms of
attributes that may be shared among different catego-
ries. The relationship between stimulus and neural
confusability supports this principle. In practice, how-
ever, the object-form topography model allows for
response types that are modular, when the shared
neurally represented features between categories are
minimal.

Understanding why the activation patterns for certain
categories are more or less distributed can leverage
more precise information about the nature of object
representations in VT cortex and the features on which
they may be based. The approach we take with PCA

and a linear discriminant classifier is simple and direct. A
variety of more sophisticated feature extraction algo-
rithms and classifiers should be explored in future work.
In conjunction with a stimulus model, a pattern-based
classification approach to the analysis of functional
neuroimaging data can constrain the interpretation of
neural representations of objects.

METHODS

Pattern Classification of the Brain Scan Data

The brain scan simulations were carried out to deter-
mine the neural discriminability of all possible pairs of
object categories for each of the 6 subjects. Two coun-
terbalance conditions were constructed using different
halves of the scans (odd vs. even runs of trials). These
served alternately as learning and test sets for all parts of
the procedure. Classification results are based, there-
fore, on averages over the 6 subjects and the 2 counter-
balance runs.

Scan Data

Raw epi scan files from 6 participants viewing 8 catego-
ries of stimuli (faces, houses, cats, chairs, shoes, bottles,
scissors, and scrambled images) were used in the anal-
ysis (Haxby et al., 2001). The data were corrected for
movement artifacts but were not preprocessed in other
ways. Because the analyses were carried out individually
for each subject, brain alignment was not necessary.

For each subject and category of objects, there were
84 scans, totaling 672 scans per subject. For some
reason, subject 5 had only 70 usable scans, making a
total of 560. The original scans consisted of 64 � 64 �
40 voxels and were masked to include only VT cortex
voxels that were significant across objects in the fMRI
study (Haxby et al., 2001). The number of significant
voxels varied between 307 and 675 for the participants,
with an average of 465.5 across the 6 participants.

Procedure

The scans for each subject were divided into the odd and
even trial runs for use alternately as the training and test
sets. The analysis was applied to all possible pairs of
object categories (e.g., face vs. house, face vs. chairs,
etc.). In each case, a principal components analysis (PCA)
was performed on the scans in the training set, which
consisted of 84 scans (42 from each of the 2 categories
in the pair) of length N, where N was the number of
significant voxels for the subject under consideration.

To represent individual scans for input to the linear
discriminant analyses, the coordinates of the scan pro-
jections on the principal components (PCs) were com-
puted. The coordinate vectors provided a concise and
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complete representation of the scans in the PCA-based
space.

The purpose of the linear discriminant classifiers
was to determine the discriminability of the scans from
pairs of categories. One component of this effort was
to determine which PCs were useful for discriminating
scans from the two object categories. We assessed this
by training two kinds of linear discriminant networks to
discriminate pairs of object categories before construct-
ing a third ‘‘optimal’’ classifier from the ‘‘useful’’ PCs.
Information from both ‘‘preliminary’’ classifiers was
used to select PCs useful for the discrimination task.

The process of constructing the optimal classifier
proceeded as follows. First, we trained a linear discrim-
inant classifier to predict object category with input
vectors consisting of the full set of coordinates on all
available PCs. One measure of the importance of indi-
vidual PCs can be found in the ‘‘learned’’ weights as-
sociated with each input coordinate. Weights with large
absolute values indicate PC’s useful for predicting the
object category of the scans in the learning set. These
weights were used subsequently as part of the informa-
tion employed for selecting PCs for the optimal classifier.

Second, a series of single dimension classifiers were
implemented to assess classification performance for
individual PCs on the test set of brain scans. Coordinates
from the training set scans on each PC were used to
predict object category. The performance of each PC for
classifying test set scans was assessed using the signal
detection measure d0, computed as z score (hit rate) � z
score (false alarm rate). Using the face–house classifica-
tion task as an example, the hit rate is the proportion of
face scans correctly categorized as face scans, whereas
the false alarm rate is the proportion of house scans
incorrectly categorized as faces. This yielded a measure
of the utility of individual PCs for generalizing object
recognition to the test set scans.

The optimal classifier was constructed by selecting the
most useful PCs for classifying both the learning and test
scans. The purpose of using data from both the learning
and test scans was to avoid the inclusion of PCs that
might have succeeded on one or the other set of scans
by chance or by overfitting. Specifically, we chose the
20 PCs in the all-coodinate classifier with the largest
weights (absolute values). Next, we chose the 20 PCs
from the individual classifiers that produced the largest
d0. PCs that appeared in both lists were combined and
used for the optimal classifier. These formed a low-
dimensional, noncontiguous subspace classifier tailored
to discriminating the object categories.

Preferred and Nonpreferred Regions

The preferred region for an individual category was
defined as the set of voxels that gave their maximum
response to that category, by comparison to the other
8 categories (Haxby et al., 2001).

Pattern Classification of the Object
Category Stimuli

Stimulus Data

The original images used to generate the brain-map
data were analyzed. For each category, forty-eight
400 � 400 grayscale images were available. These in-
cluded 12 exemplar objects photographed from 4 views.
The scrambled category contained samples of phase-
scrambled exemplars from each of the other 7 catego-
ries of objects.

Procedure

The procedure for classifying the stimuli by object
category was identical to that employed for brain scan
data. Again, stimuli were divided into training and test
sets. Images were converted to vectors by concate-
nating the rows of pixels in the image into a vector.
PCA was performed on pairs of object categories using
the images in the learning set (e.g., 24 face vectors and
24 house vectors). Linear discriminant classifiers, as
described previously, were used to determine which
PCs were useful for classifying the objects (e.g., face vs.
house). Optimal classifiers were then formed to generate
the d0 data in the bottom triangle of Table 1.

APPENDIX

Each analysis was performed on data from a single
subject viewing two categories of objects. These data
formed an I row � K column matrix, X, where I was the
number of voxels and K = 2 � J, with K equal to the
number of scans available per subject for the 2 cate-
gories. See Methods for the exact values of I and J.

The analysis proceeded as follows. Each column of
X was normalized to length 1. The matrix X was then
divided into an I � J training matrix, denoted Xtrain,
and an I � J test matrix, denoted Xtest. The training
and test scans in each matrix included an equal number
of scans from each of the two categories, which were
selected according to the counterbalance scheme de-
scribed previously. Thus,

X ¼ ½XtrainXtest� ð1Þ

Next, the matrix for the training set was decomposed
according to the singular value decomposition:

Xtrain ¼ P�QT ð2Þ

where

PTP ¼ I and QTQ ¼ I ð3Þ

are the left and right matrices of singular vectors and
� is the diagonal matrix of the singular values ranked
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from the largest to the smallest (see Abdi, Valentin, &
Edelman, 1999, Equation 3.20 ff.).

In general, depending upon the simulation, we kept a
subset of the singular vectors (L vectors) and denote the
matrix composed of the L selected columns of matrix P
(respectively, �, QT) as P[L] (respectively, �[L], Q[L]

T).
To discriminate between the two categories of objects
being viewed, we trained a linear classifier using the
projections Q[L]. The linear classifier was obtained by
computing a weight vector (see Abdi et al., 1999, Equa-
tion 4.14 and p. 60, ff.)

w ¼ Q½L�t ð4Þ

where t is the target vector whose values are set to 1 for
the elements of the first category and �1 for the ele-
ments of the second category.

The category membership of scans from the test
set was obtained by first computing their projections
on the left singular vectors:

Qtest ¼ XT
testP½L��

�1
½L� ð5Þ

and then multiplying the projections by the weight vec-
tor w to obtain the predicted category membership ttest

ttest ¼ Qtestw ð6Þ

Scans with ttest 	 0 were assigned to the first category
and scans with negative values of ttest were assigned to
the second category. The proportion of scans correctly
assigned to 1 of the 2 categories in the pair (arbitrarily
chosen) gave the hit rate, whereas the proportion of
scans incorrectly assigned to that arbitrarily chosen
category gave the false alarm rate. The statistic d0 was
computed for each pair of categories based on the hit
and false alarm rate.

The procedure was followed for all 28 pairs of cate-
gories for each of the 6 subjects. This gave 6 matrices of
d0 values, which were averaged to produce Table 1.
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