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An important human capacity is the ability to imagine performing an action, and its consequences, without
actually executing it. Here we seek neural representations of specific manual actions that are common across
visuo-motor performance and imagery.
Participants were scanned with fMRI while they performed and observed themselves performing two differ-
ent manual actions during some trials, and imagined performing and observing themselves performing the
same actions during other trials. We used multi-variate pattern analysis to identify areas where representa-
tions of specific actions generalize across imagined and performed actions. The left anterior parietal cortex
showed this property. In this region, we also found that activity patterns for imagined actions generalize bet-
ter to performed actions than vice versa, and we provide simulation results that can explain this asymmetry.
The present results are the first demonstration of action-specific representations that are similar irrespective
of whether actions are actively performed or covertly imagined. Further, they demonstrate concretely how
the apparent cross-modal visuo-motor coding of actions identified in studies of a human “mirror neuron sys-
tem” could, at least partially, reflect imagery.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Humans are social beings with a highly developed brain that en-
ables them to interact with others and their environment in complex
ways not seen in other animals. The ability to predict the conse-
quences of our actions is crucial for such interactions, not only while
performing actions—explained by ‘forward’ models (Kawato, 1999;
Wolpert et al., 2003)—but also when imagining the outcome of our ac-
tions without actually executing them (Wolpert et al., 2003).

Although imagery of actions may be performed without any overt
behavior, there is a long line of evidence showing that imagined ac-
tions and overt actions may share a cognitive mechanism. For exam-
ple, Shepard and Metzler (1971) found that a mental object matching
task showed a linear increase of reaction times as a function of rota-
tion angle. Mental imagery of actions has also attracted interest in
sport psychology, and mental practice is commonly reported in elite
athletes (Hall and Rodgers, 1990). Several studies have shown that
not only physical practice can improve performance but that imagery
of practice, although generally less powerful, can improve sport per-
formance as well (Hinshaw, 1991; Feltz and Landers, 1983).
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Apart from improving existing skills, it has also been suggested
that imagery is important in acquiring new action skills (Annett,
1995). For example, Mackay (1981) demonstrated that sentence
production improves not only when producing these out loud but
also silently. Beneficial effects of imagery have also been observed in
typing (Wohldmann et al., 2007), music (Brodsky et al., 2008), dance
(Golomer et al., 2008) and surgery (Hall, 2002). Analogous mecha-
nisms may be involved when learning from observation, i.e. actions
performed by others could be represented during observation, and
then such representations could be re-activated, through mental im-
agery, during action execution (e.g., Sheffield, 1961; Cross et al.,
2009; Calvo-Merino et al., 2005; Buccino et al., 2004; Cross et al.,
2006).

Inspired by the discovery of ‘mirror neurons’ in macaques—
neurons that fire both when the monkey executes an action or ob-
serves the action—in premotor and parietal cortex (di Pellegrino
et al., 1992; Gallese et al., 1996), functional magnetic resonance imag-
ing (fMRI) studies have investigated the neural correlates of such pu-
tative action representations shared across different modalities with a
prime focus on imitation, observation, and execution. These studies
have consistently found that several areas in the frontal and parietal
cortex show an increased response for the imitation, observation
and execution of actions, a result that often has been interpreted as
evidence for human mirror neurons (e.g., Molenberghs et al., 2011;
Rizzolatti and Fabbri-Destro, 2008; Gazzola and Keysers, 2008; but
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see Brass and Heyes, 2005, Welberg, 2008; Dinstein et al., 2008b;
Hickok, 2009; Iacoboni and Dapretto, 2006). Fewer studies have in-
vestigated the role of imagery, although there is evidence that imag-
ined actions engage similar areas as observed or executed actions
(Filimon et al., 2007; Lotze et al., 1999; Ehrsson, 2003). Crucially,
the large majority of studies did not investigate the representations
of specific actions (Gazzola and Keysers, 2008) and—given the limited
spatial resolution of fMRI—do not rule out that observed and executed
actions are subserved by different but spatially overlapping neural
populations (Dinstein et al., 2008b). The few studies that have inves-
tigated action-specific representations yielded mixed results and
interpretations, with some arguing for different neural populations
for observed and executed actions (Dinstein et al., 2008a; Lingnau
et al., 2009) and others for evidence for a cross-modal visuo-motor
population (Chong et al., 2008; Kilner et al., 2009; Oosterhof et al.,
2010, 2012).

To complicate this debate further, a possible interpretation of os-
tensible visuo-motor coding of observed and executed actions is men-
tal imagery. For example, when participants observe actions they may
also imagine executing the action without any overt behavior. Al-
ternatively, participants may imagine the observation of their own
actions while they execute unseen actions. Such imagery effects may
result in engagement of unimodal action-specific representations
that are similar both during performed and executed actions, and
therefore would appear (incorrectly) to reflect cross-modal coding.
Indeed, neuroimaging studies have provided evidence for shared
representations of imagined and performed or observed movements
of specific body parts in somatosensory (Stippich et al., 2002) and
occipito-temporal cortices (Orlov et al., 2010). However, it is unclear
whether mental imagery of specific actions can explain the apparent
cross-modal coding of visuo-motor representations identified in pre-
vious studies (Chong et al., 2008; Kilner et al., 2009; Oosterhof et al.,
2010; Oosterhof et al., 2012).

We sought to investigate this specific possibility empirically, and
more generally to extend our understanding of the neural represen-
tations behind action imagery. We asked participants to perform
two manual actions (while they could see their own right (dominant)
hand) during certain trials, and to imagine these actions without
overt behavior during other trials, while they were scanned with
fMRI. We used multi-variate pattern analysis (MVPA; Edelman et al.,
1998; Haxby et al., 2001; Norman et al., 2006; Haynes and Rees, 2006)
to distinguish between the neural patterns associated with two man-
ual actions. To anticipate our findings, in the crucial analysis compar-
ing patterns of activity produced during performing vs. imagining
actions, we found that the left anterior parietal cortex represents spe-
cific actions in a manner shared across both conditions. These find-
ings are the first evidence that neural coding of specific imagined
actions is similar to overtly performed actions and raise questions
about the interpretation of studies investigating cross-modal visuo-
motor coding of actions.

Methods

Participants

12 right-handed, healthy adult volunteers were recruited from
the Bangor University community. All participants had normal or
corrected-to‐normal vision. Participants satisfied all requirements in
volunteer screening and gave informed consent. Procedures were
approved by the Ethics Committee of the School of Psychology at
Bangor University. Participation was compensated at £15.

Design and procedure

The same setupwas used as in Oosterhof et al. (2010, Experiment 2)
in which participants manipulated a cup-shaped object that they could
see through a forward-looking mirror that was attached to the scanner
coil. In the ‘perform’ condition, participants opened their eyes and
performed either a ‘lift’ or a ‘slap’ action while they saw their hand
and the object through the forward lookingmirror. In the ‘imagery’ con-
dition, participants closed their eyes and imagined both the motor and
visual aspects of performing a ‘lift’ or a ‘slap’ (as in the perform condi-
tion), but without actually moving their hand (or any other body
part) and without seeing their hand or the object. Thus, the design
was 2 {perform, imagery}×2 {lift, slap} with 4 conditions in total.

Instructions consisted of a combination of spoken instructions
(generated by the Apple Mac OS 10.6 “say” speech synthesizer pro-
gram) and sinusoid tones that increased or decreased linearly in
frequency between 400 and 1000 Hz during a 400 ms period. In
perform trials the word ‘open’ was spoken starting at trial onset
(instructing participants to open their eyes), followed by a sinusoid
tone starting at one second after trial onset. Increasing or decreasing
frequencies indicated whether participants should perform a lift or a
slap, with the pairing (increasing tone for lift and decreasing for slap;
or vice versa) counterbalanced across participants. In imagery trials
the word ‘close’ was spoken at trial onset (instructing participants
to close their eyes) followed by either the spoken word ‘lift’ or ‘slap’
starting one second after trial onset. Each trial lasted for four seconds
in total. We used different types of action instructions (sinusoid tones
versus speech) for perform and imagery trials so that any shared rep-
resentations across perform and imagery trials could not be due
to similarities of auditory stimuli. Furthermore we used speech for
the imagery condition for all participants because we reasoned that
(1) representations of imagined actions would be weaker than that
of performed actions and (2) spoken words of the two actions
would facilitate action imagery more than sinusoid tones.

Each participant was scanned during a single session with 6 to
8 functional scans and an anatomical scan if such a scan was not avail-
able from another scanning session. Each functional scan consisted of
four ‘chunks’ of 16 trials (with a duration of 64 s) each, where each of
the four conditions was presented four times in random order with
the constraint that each condition preceded each condition equally
often (i.e. the conditions were first-order counterbalanced; cf. Aguirre,
2007). Each chunk was preceded and followed by a 16 s baseline
block that started with the auditory instruction ‘open’ followed by
‘relax for now’. Participants practiced performing and imagining the ac-
tions first outside the scanner and then a second time during a practice
functional scan inside the scanner (for which the data was discarded).
The practice scan was also used to ensure that the auditory stimuli
could be heard well despite the scanner noise.

Participants were instructed similarly as in the study by Oosterhof
et al. (2010) and as follows: to rest their right hand on the table, on the
right-hand side of the object (from their perspective); to only move
their right hand during perform trials; not to touch the object except
during a perform trial; to keep their left hand and arm under the
table, out of view; and after a “close” instruction, to keep their eyes
closed until they were instructed to open them again and to imagine
both executing and observing the instructed action without moving
their hand or arm. Compliance of performing hand actions and open-
ing and closing the eyes wasmonitored using anMRI compatible cam-
era and eye tracker, respectively.

Data acquisition

The data was acquired using a 3 T Philips MRI scanner with a SENSE
phased-array head coil. For functional imaging, a single shot T2⁎‐weighted,
gradient echo planar imaging sequence was used to achieve near-
whole cerebrum coverage with the following parameters: repetition
time (TR) 2500 ms; echo time (TE) 35 ms; flip angle 90°; 39 slices
acquired in interleaved ascending order; no slice gap; field of view
(FOV) 240×240 mm2; matrix size 96×96; 2.5×2.5×2.5 mm3 voxels;
anterior–posterior phase-encoding; SENSE factor 2. Slices were tilted
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approximately 20° from the anterior commisure–posterior commisure
axis in the frontal-superior direction. For participants with large
brains the parietal lobe was fully covered at the expense of reduced
coverage of the anterior–inferior part of the temporal lobes. Seven
dummy scans were acquired before each functional run to reduce pos-
sible effects of T1 saturation. Parameters for T1-weighted anatomical
scans were: matrix size 288×232; 1×1×1 mm3 voxels; TR 8.4 ms, TE
3.8 ms; flip angle=8°.

Preprocessing

Data was processed using AFNI (Cox, 1996), SUMA (Saad et al.,
2004), Matlab (the Mathworks Ltd., Cambridge, UK), the Surfing
(Oosterhof et al., 2011a), LibSVM (Chang and Lin, 2011) and Fast
Marching (Peyre, 2008) toolboxes, and custom written scripts in a
similar fashion as described in earlier work (Oosterhof et al., 2011b).

Briefly, anatomical surfaces representing the outer (pial) and inner
(white matter) boundaries of the cortical gray matter, and an inflated
surface used for visualization, were reconstructed using the anatomi-
cal scans and Freesurfer's recon-all script (Fischl et al., 1999). These
surfaces were aligned to a template brain based on cortical folding
patterns, which improves inter-subject alignment. An intermediate
surface was computed by taking the node-wise average of the pial
and white matter surfaces. Surfaces were resampled to have a stan-
dard mesh topology with AFNI SUMA's MapIcosehedron (200,000
triangles; 100,002 nodes) and subsequently aligned to the first func-
tional volume of the first functional run using the surfing toolbox
which uses AFNI's 3dAllineate (Saad et al., 2009). For visualization of
group results, both the anatomical volume and the surfaces were
transformed to Talairach (Talairach and Tournoux, 1988) space
(using the estimated affine transformation from recon-all) and aver-
aged. For cluster-based analysis, the group average area for each
node was computed separately by taking the average across the inter-
mediate surfaces across participants. For information mapping
(Kriegeskorte et al., 2006; Oosterhof et al., 2011b) voxels were select-
ed for each center node by constructing a searchlight disk on the
intermediate surface based on geodesic distance, selecting the corre-
sponding voxels in between or on the pial andwhitematter boundaries,
and dynamically increasing the searchlight radius until approximately
200 voxels were selected.

Using AFNI (Cox, 1996), for each participant and each functional
run separately, data was despiked (3dDespike), time-slice corrected
(3dTshift), and motion corrected (3dvolreg) with trilinear resampling
relative to the first functional volume of the first functional run. For
surface mapping, the resulting data was projected onto the surface
(3dVol2Surf) and spatially smoothed on the intermediate surface
with a 5 mm full-width half-maximum (FWHM) Gaussian kernel.
Percent signal change was computed at each spatial location (voxel
or node) by dividing the signal in each time point by one percent of
the average signal across the run.

Response estimates

The BOLD responses to the different conditions were estimat-
ed using the General Linear Model as implemented in AFNI's
3dDeconvolve. Predictors were based on a boxcar function (positive
1 to 4 s after trial onset) convolved with 3dDeconvolve's ‘BLOCK’
canonical hemodynamic response function. Two types of design ma-
trices were used, one for univariate activation mapping and the
other for MVPA. For activation mapping, the design matrices were
based on the full session (all runs together) and contained predictors
for perform and imagery trials, with no distinction between slap
and lift actions. For information mapping, the design matrices were
constructed for each run separately and contained predictors for
each chunk (see above) and each action, yielding 8 action predictors
per run. All design matrices contained predictors of no interest based
on head motion estimates (3 translation and 3 rotation parameters)
and Legendre polynomials (up to and including third degree) to re-
move low-frequency drifts.

Univariate whole-brain activation mapping

To identify areas that showed an increased response during perform
or imagery trials (compared to baseline periods), a group map was
computed by testing the β-response estimates from individual partici-
pants' perform trials against zero with a one-sample t-test. A group
map for imagery trials was computed similarly. Areas that showed an
increased response during both perform and imagery trials were iden-
tified based on a conjunction map, where to each node separately, the
minimum (or maximum) of the t values obtained from the perform
and imagery maps was assigned if both values were positive (or nega-
tive, respectively). The value zerowas assigned if the perform and imag-
ery values had different signs.

Multivariate pattern analysis

Voxels were selected according to various criteria for MVPA (see
below). Based on the t-values in these voxels, unimodal ‘perform’ pat-
tern classification was conducted with a support vector machine classi-
fier (Chang and Lin, 2011) by take-one-‘perform action’-chunk-out
cross-validation to distinguish between slap and lift actions. Classifi-
cation accuracies were converted to z scores, where z=0 (or z>0) cor-
responds to at chance (or above chance, respectively) classification
accuracy, and tested against zero (chance) using a one-tailed t-test.
Unimodal ‘imagery’ patterns were analyzed similarly. For cross-modal
perform-imageryMVPA, the train and test setswere in differentmodal-
ities (train in perform, test on imagery; and vice versa) and results aver-
aged. From each individual pattern the average was subtracted to
normalize the response across patterns irrespective of main response
differences, so that any action discrimination effects could not be due
to global univariate activation differences across the two actions.

Multivariate region-of-interest analysis

Regions of interest were defined around center nodes using two
criteria: functional and anatomical. Based on the functional criteria,
group center nodes were selected under the constraints that (1) the
t-value corresponded to an uncorrected significance level of pb .001
in the univariate conjunction analysis, and (2) no other node within
2.5 cm showed a higher t-value (cf., Fedorenko et al., 2010; Oosterhof
et al., 2012).We note that although the same data was used for defining
ROIs and subsequent MVPA in these ROIs, our approach is not
susceptible to ‘circular inference’ (also known as ‘double dipping’)
problems (Vul et al., 2009; Kriegeskorte et al., 2009) because the regres-
sors used in the univariate analysis contained, by construction, no infor-
mation about which specific action was performed or imagined during
each trial. Based on the anatomical criteria, nodes of regions of interest
found in a previous study (bilateral ventral and dorsal premotor cortex,
anterior parietal cortex, and occipito‐temporal cortex; Oosterhof et al.,
2012) were taken as group center nodes.

Voxels were selected in individual participants as follows. First,
individual center nodes were those with the maximal conjunction
t-value within a 15 mm distance from the group center node. Second,
a 10 mm radius sphere was centered around the voxel containing
the individual center node. Third, a subset of voxels with the highest
t-values in the individual's conjunction was selected for MVPA. Fourth,
MVPA was conducted by taking 50 samples of random subsets from
these voxels, MVPA was conducted with each sample, and the
z-scores averaged across samples. Both the percentage of voxels initially
selected (‘ROI percentage’) from the sphere and the percentage of
voxels selected in random subsets (‘subset percentage’) varied from
10 to 90% in steps of 10%. This approach allowed for a (qualitative)
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assessment of the reliability of the MVPA results with respect to varia-
tions in voxel selection parameters.
Multivariate region-of-interest simulations

To investigate the potential contributions of different neural
populations coding for specific actions either in a unimodal-perform,
unimodal-imagine, or cross-modal sense, we simulated data in a re-
gion of interest (100 voxels, 16 chunks with each of the four actions)
as follows. First, we chose values a and b (between 1/10 and 10) for
the relative contribution of unimodal-imagine and cross-modal
patterns relative to the contribution of unimodal-perform. The latter
had a relative contribution of 1; lower (or higher) values for a and
b mean that more voxels represent actions either in a unimodal-
imagine or cross-modal manner. Second, given the values for a and
b, the 100 voxels were partitioned into three hypothetical ‘neural
populations’ as follows: 100/(1+a+b) voxels were assigned to the
unimodal-perform population, 100·a/(1+a+b) to the unimodal-
imagine population, and 100·b/(1+a+b) to the cross-modal imagery
population (these numbers were rounded to the nearest integer). For
example, values of a=0.5, b=8.5 would yield 10 unimodal-perform
voxels, 5 unimodal-imagine voxels, and 85 cross-modal voxels. Third,
action-specific patterns were generated for each of the four actions so
that in each neural population, the voxels coding for their respective
modality differed by a value of 1 (arbitrary units) in their respective re-
sponse between the two actions. For example, given a voxel coding for
unimodal-perform actions, its simulated response values would be 1
higher in the perform-lift than in the perform-slap trials, but these
values would not differ across the imagine-lift and imagine-slap trials.
Similarly, a voxel coding cross-modally would have response values
that were 1 higher in both the perform-lift and imagine-lift trials com-
pared to perform-slap and imagine-slap trials. Fourth, randomGaussian
noise was added to the simulated response. Similar to earlier work
(Oosterhof et al., 2010, Supplementary Fig. 6), we assumed that the
imagined trialswould elicit a noisier response than the performed trials.
Therefore we added Gaussian noise with .1 arbitrary unit 2 variance to
the perform-trials and .01 arbitrary unit 2 variance to the imagined tri-
als. Fifth, we varied a and b independently between 0.1 and 10, and
for each combination an SVM classifier was trained and tested on this
Table 1
Regions of interest.

Abbr. Area Univariate peak coordinates Peak

x y z t

lPTa Left anterior planum temporale −60 (4) −16 (7) 4 (3) 12.6
lPTp Left posterior planum temporale −63 (4) −33 (8) 9 (4) 16.4
lTPJ Left temporo–parietal junction −56 (7) −43 (5) 23 (7) 15.9
lSMA Left supplementary motor area −7 (1) 6 (5) 58 (7) 14.2
lPMv Left ventral premotor cortex −52 (7) 7 (5) 5 (3) 8.8
lPMd Left dorsal premotor cortex −38 (8) −1 (5) 51 (3) 14.5
lPCa Left anterior parietal cortex −44 (6) −40 (5) 48 (4) 11.7
lPrCGl Left lateral pre-central gyrus −59 (5) 2 (4) 18 (8) 9.9
rPTa Right anterior planum temporale 66 (4) −14 (4) 4 (3) 12.1
rPTp Right posterior planum temporale 57 (5) −30 (5) 13 (4) 10.9
rINS Right insula 37 (3) 22 (7) 6 (5) 6.5
rSTG Right superior temporal gyrus 63 (4) −35 (6) 9 (5) 15.6
lPMv Left ventral premotor cortex −53 (4) −0 (4) 43 (6) 11.7
lPMd Left dorsal premotor cortex −33 (6) −5 (3) 49 (3) 14.0
lPCa Left anterior parietal cortex −41 (6) −38 (4) 49 (6) 7.6
lOT Left occipito-temporal cortex −50 (4) −72 (7) 2 (4) 6.8
rPMv Right ventral premotor cortex 56 (3) 0 (4) 43 (4) 10.9
rPMd Right dorsal premotor cortex 43 (9) −5 (2) 54 (6) 7.8
rPCa Right anterior parietal cortex 34 (3) −43 (4) 51 (8) 7.4
rOT Right occipito-temporal cortex 53 (7) −65 (8) −2 (5) 4.6

Talairach coordinates, average univariate conjunction peak value, and classification accura
standard deviations in parentheses. The first eleven areas (above the horizontal line) ar
anatomically (see Methods). Accuracies are reported as percentages (50% is chance); p-val
data using cross-validation with a 1000 iterations and classification ac-
curacies were averaged.

Multivariate whole-brain information mapping

Based on the 200 voxels selected around each node (see above),
MVPA was conducted as described in the previous section and the
corresponding z-scores assigned to each node. A threshold-free clus-
ter enhancement (TFCE) map (Smith and Nichols, 2009) was comput-
ed based on the node-wise average z-score across participants using
recommended values of h0=0, E=0.5, H=2 and dh=0.1. Whole-
hemisphere corrected significance of TFCE scores was performed
using a bootstrap procedure. A null TFCE map was based on sampling
with replacement 12 (the number of participants) individual
participant's maps, negating each z-score for each samplewith a prob-
ability of .5 and computing themean across these samples. This proce-
dure was repeated a thousand times and p-values for each TFCE value
in the original map were computed by dividing the number of times
that value exceeded the maximum of each TFCE null map by the num-
ber of permutations (a thousand).

Results

Univariate activation mapping

The conjunction group analysis (Table 1, Fig. 1) revealed several re-
gions with an increased response during both the perform and imagery
conditions. Seven local maxima were identified in the left hemisphere
and four in the right hemisphere, including bilateral planum temporale,
left anterior parietal cortex, left supplementary motor area, and several
clusters in frontal cortex bilaterally. The most robust activation was
found in the bilateral planum temporale, probably due to auditory stim-
ulus presentation.

Multivariate region-of-interest analysis

The local maxima from the univariate analyses were used as cen-
ters of regions of interest around which voxels were selected for
MVPA (see Methods). In a first analysis (Table 1, Fig. 2a), MVPA was
based, in each region-of-interest (ROI), on the top 50% (based on
Perform p Imagine p Cross-modal p

Acc/% t Acc/% t Acc/% t

55.3 3.1 0.0048 51.5 1.6 0.0646 51.2 1.7 0.0621
57.7 4.5 0.0004 53.9 3.8 0.0015 49.7 −0.4 0.6558
56.7 4.4 0.0005 52.0 2.0 0.0385 49.0 −1.5 0.9143
56.6 6.6 0 49.1 −0.7 0.7631 51.4 2.0 0.0374
57.0 5.1 0.0002 50.5 0.6 0.2776 50.3 0.4 0.3466
56.2 3.7 0.0019 49.5 −0.5 0.683 50.2 0.5 0.3146
61.1 5.5 0.0001 50.6 0.4 0.3514 52.3 3.2 0.0042
56.8 5.7 0.0001 52.3 1.7 0.0542 50.8 1.2 0.1272
55.5 3.1 0.0054 51.9 1.7 0.0562 49.8 −0.4 0.6519
54.7 4.4 0.0005 51.7 1.1 0.1416 50.6 0.8 0.2258
56.0 3.8 0.0015 51.0 1.3 0.1083 50.2 0.4 0.3592
52.7 2.4 0.0166 51.6 1.7 0.0563 49.6 −0.5 0.7017
55.6 5.0 0.0002 49.5 −0.4 0.6548 50.2 0.3 0.3665
54.8 3.5 0.0026 50.3 0.2 0.4406 49.9 −0.3 0.5996
63.0 7.8 0 51.1 0.9 0.1845 52.1 2.3 0.02
58.3 12.9 0 53.8 1.5 0.0794 50.9 1.3 0.1031
54.8 3.4 0.0032 51.0 0.8 0.2087 49.7 −0.5 0.6858
56.9 8.8 0 52.0 3.6 0.0022 49.5 −0.5 0.6909
56.8 5.1 0.0002 50.3 0.3 0.3998 50.6 0.9 0.1993
56.3 3.9 0.0013 49.8 −0.1 0.5499 50.9 1.6 0.0725

cies for regions of interest are shown in Fig. 6. Mean coordinates are reported with
e defined functionally, the other eight areas (below the horizontal line) are defined
ues are not corrected for multiple comparisons.
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Fig. 1. Univariate conjunction group analysis and ROI definitions. (a) Conjunction
group map of areas showing increased (red) or decreased (blue) activation compared
to baseline for both performed and imagined actions. (b) Regions-of-interest based on
local maxima in the conjunction analysis ((a); red font) and coordinates from a previ-
ous study (Oosterhof et al., 2012; blue font). See Table 1 for coordinates, statistics and
abbreviations.

a

b

Fig. 2. Region-of-interest pattern classification accuracies. (a) Pattern classification
z-scores (0=chance) for action discrimination in 12 regions‐of-interest (ROIs; see
Fig. 1, Table 1) localized from the univariate group analysis (see Fig. 1) for unimodal
performed, unimodal-imagined, and cross‐modal MVPA. p-Values are not corrected
for multiple comparisons; bars indicated with a ‘★’ (star) survive False Discovery
Rate correction for 11 ROIs. (b) Similar classification scores based on coordinates
from an earlier study (Oosterhof et al., 2012). Conventions are as in (a).
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the conjunction response) of the voxels around a sphere with 10 mm
radius. MVPA was based on the average z scores of 50 random sam-
ples that each contained 50% of the voxels. This analysis showed ro-
bust unimodal discrimination between lifts and slaps in the perform
condition in all areas (max(p)=.016 (uncorrected), all ROIs survive
False Discovery Rate (FDR) correction). In the unimodal imagery con-
dition action discrimination was weaker, with the strongest response
in left posterior planum temporale [lPTp] (p=.002, surviving FDR
correction), followed by left temporal parietal junction [lTPJ] (p=
.038, not surviving FDR correction).

In the cross-modal perform-imagery analysis, action discrimina-
tion was observed in left anterior parietal cortex [lPTa] (p=.004, sur-
viving FDR correction), followed by the left supplementarymotor area
[lSMA] (p=.037, not surviving FDR correction). A post-hoc analysis
on the left anterior parietal cortex region showed an asymmetry in
cross-modal classification: training on imagined trials and testing on
performed trials showed better action discrimination (t11=3.89,
p=.001) than training on performed trials and testing on imagined
trials (t11=1.87, p=.044), and this difference was significant (t11=
4.10, p=0.002 (two-tailed)).

In an earlier study, with different participants, we identified other
areas—bilateral ventral and dorsal premotor cortex, anterior parietal
cortex, and occipito-temporal cortex—that showed increased activity
(compared to baseline) for both performed and observed actions
(Oosterhof et al., 2012). MVPA around these areas (Fig. 2b) showed
similar effects: robust action discrimination in the uni-modal perform
condition and weaker discrimination in the uni-modal imagery con-
dition (with a possible exception for right dorsal premotor cortex).
The cross-modal analysis based on these areas showed similar but
weaker evidence for action discrimination in left anterior parietal cor-
tex (p=.02, uncorrected) and no evidence for such action discrimi-
nation in other areas.

To assess the robustness of the MVPA results with respect to voxel
selection parameters we varied both the percentage of voxels selected
based on the largest perform–imagery conjunction response and the
percentage of voxels in random subsets for MVPA (see Methods). Re-
sults are shown in heat maps for the cross-modal analysis for both the
mean accuracy z scores (Fig. 3) and t scores (Fig. 4). Note that the
center square in an ROI's heatmap represents the corresponding
cross-modal bar in Fig. 2. We do not attempt a full quantitative analy-
sis of the effects of voxel selection—not at least because of chance cap-
italization considerations—but on a qualitative level the most robust
response, irrespective of specific voxel selection parameters, was ob-
served in left anterior parietal cortex.

To increase our understanding of the imagine–perform and
perform–imagine cross-modal classification accuracies asymmetry
observed in the left anterior parietal region (see above), in the
region-of-interest simulation (Fig. 5) we assessed the effect of differ-
ent contributions from three different, hypothetical populations
representing specific actions either in the performed modality, in
the imagined modality, or cross-modally. As expected – by construc-
tion of the amount of noise added to the generated patterns –

within-modality classification accuracies were higher for performed
(Fig. 5a) than for imagined (Fig. 5d) actions. More interestingly, and
consistent with the classification accuracy asymmetry observed in
the left anterior parietal cluster, classification accuracies were greater
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Fig. 3. Region-of-interest cross-modal perform–imagine pattern classification accuracy
z scores as a function of voxel selection parameters. Heat maps for each region-
of-interest (see Fig. 1, Table 1), defined (a) functionally or (b) anatomically,
representing cross-modal perform–imagine multi-variate pattern analysis action dis-
crimination z-scores as a function of the percentage of maximally responsive voxels se-
lected from the univariate conjunction analyses (rows) and the percentage of voxels
taken from these of random subsets (columns); see inset. The value at the center of
each heat map, indicated with an ‘x’ in the inset, corresponds to the cross‐modal bars
in each of the region-of-interest plots displayed in Fig. 2.
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Fig. 4. Region-of-interest cross-modal perform–imagine pattern classification accuracy
t-scores as a function of voxel selection parameters. Heat maps for each region-of-
interest, defined (a) functionally or (b) anatomically, are as in Fig. 3 but representing
t- rather than z-scores.

a b

c

e

d

Fig. 5. Region-of-interest simulation of cross-modal classification accuracies for differ-
ent mixtures of different neural populations. Heat maps of action-specific classification
accuracies when the train-test set of trials are either (a) perform–perform, (b) per-
form–imagine, (c) imagine–perform, or (d) imagine–imagine. Patterns consisted of a
mixture of simulated neural populations representing performed, imagined, and
cross-modal performed–imagined actions (see Methods). The relative contribution of
each of these three populations varies as a function of the location in the heat map:
the horizontal and vertical axes show the strength of patterns (in terms of number of
voxels) representing actions cross-modally and imagined, respectively, relative to the
strength of patterns representing performed actions (strength=1). The number of
voxels in each simulated population, and the sum of the number of voxels in the
cross-modal and each of the other two populations, is shown on the right hand side.
Simulated patterns had more noise added for imagined trials than performed trials.
(e) The difference between maps (c) and (b), illustrating that different mixtures of
the three types of simulated populations can yield asymmetries between perform–

imagine and imagine–perform cross-modal classification accuracies. Abbreviations:
p.+c.m., perform and cross-modal; i.+c.m., imagine and cross-modal.
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when the classifier was trained on imagined actions and tested on
performed actions (Fig. 5c) than in the reverse case (Fig. 5b) when
the simulated imagery population was stronger (contained more
voxels). The difference between these cases was maximal when the
contribution of unimodal imagery patterns was relatively low (fewer
voxels) compared to unimodal performed or cross-modal patterns,
and minimal (negative) when the contribution of unimodal performed
patterns was relatively strong (more voxels) compared to unimodal
imagined and cross-modal patterns. We note that additional analyses
where performed and imagined actions were of similar strength (i.e.
similar amounts of noise were added), showed quantitatively similar
results as Fig. 5e although the effects were weaker, which suggests
that asymmetries in classification accuracies are not only due to differ-
ent noise levels across performed and imagined actions but can be am-
plified by such differences.

Multivariate whole-brain information mapping

Consistentwith the ROI analyses, the unimodal perform information
map (Fig. 6a) showed large clusters survivingmultiple-comparison cor-
rection in and around the visual, auditory, motor and somatosensory
areas. In the unimodal imagery information map (Fig. 6b), regions in
the bilateral auditory cortex (planum temporale) and also a cluster in
left frontal cortex survived multiple-comparison correction. In the
critical cross-modal case (Fig. 6c), only a cluster in left anterior parietal
cortex (x, y, z=−52,–34, 40, area 770 mm2) survived multiple-
comparison correction. A post-hoc analysis directly comparing accura-
cies in two different cross‐modal train-test arrangements (imagine–
perform and perform–imagine) found no significant clusters, although
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Fig. 6. MVPA group analysis. Whole-brain group analysis showing classification z-scores for (a) unimodal perform, (b) unimodal imagery, and (c) cross-modal perform–imagery
discrimination between lift and slap actions. Nodes surviving Threshold-Free Cluster Enhancement multiple-comparison correction (see Methods) are surrounded by blue.
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the strongest cluster across the brain (min(p corrected)=0.14)was lo-
cated at a similar location in the left anterior parietal cortex, consistent
with the ROI results reported above.
Discussion

Using fMRI MVPA we investigated how the human brain repre-
sents performed and imagined actions. In the unimodal perform anal-
ysis, when participants performed two distinct objected-related
actions (lifts and slaps) while observing their hand and the object
that was manipulated, we found that spatially distributed patterns
dissociated the two actions across large portions of the cortex that in-
cluded auditory, visual, somatosensory, and motor areas. The involve-
ment of these areas is not surprising, given that the two actions were
cued with different auditory cues, performing the actions required
action-specific motor planning and execution, and observing the
hand and object while performing the actions yielded visual inputs
that differed between the actions.

In the unimodal imagery analysis we found that the planum tem-
porale, bilaterally, dissociated the two actions. Because this area con-
tains the auditory cortices, this is most likely due to the difference
between the sounds of the words that cued the action that was imag-
ined. The only other area that also showed discrimination between ac-
tions in the whole-brain analyses was in the left frontal cortex near
Broca's language area. One explanation is that this area is involved in
processing the spoken action instructions. Another explanation is that
this area is involved in representing manual actions (e.g., Fogassi and
Ferrari, 2007; Heiser et al., 2003). With the current paradigm we are
not able to dissociate these two explanations and refrain from further
speculation.

Most importantly, the cross-modal perform-imagery analysis
found that the left anterior parietal cortex represented specific actions
similarly across the perform and imagery conditions. Because in the
imagery condition participants closed their eyes, did not move, and
received auditory stimuli (words) that were different than those
presented in the perform condition (sinusoid tones), these effects can-
not be explained by trivial stimulus properties shared across the per-
form and imagery condition such as motor planning or execution, or
visual or auditory input. We note that although the discrimination in
the ‘imagine’ condition was relatively weak and did not reach signifi-
cance on itself, we have shown earlier (Oosterhof et al., 2010, Supple-
mentary Fig. 6) and in the current work (Fig. 5) that this not does
preclude the possibility of detecting cross-modal information if the
other (‘perform’, in this case) modality shows strong action-specific
representations.
More specifically, our results showed higher cross-modal classifica-
tion accuracies when the classifier was trained on imagined trials and
tested on performed trials than in the reverse case. We found similar
effects in simulations that assumed varying degrees of contributions
(in terms of relative numbers of voxels) of three different neural
populations that represent specific actions only when performed, only
when imagined, or across modalities. These findings can be explained
by considering which information a classifier uses when it is trained
on a series of patterns. If the pattern information for performed actions
is relatively strong (due to visual input, motor planning and execution,
etc.) compared to imagined and cross-modal patterns, then training a
classifier on performed actions causes the decision boundary of the clas-
sifier to be based mainly on patterns evoked by these aspects of action
performance that do not generalize to imagined actions. Hence classifi-
cation accuracies of these imagined actionswill be relatively low. On the
other hand, training a classifier on imagined actionswill cause the deci-
sion boundary to be based on a mixture of imagined and cross-modal
information, and generalization to performed actions will be relatively
high.

The preceding analysis suggests that patterns evoked during
imagined actions are less affected by brain responses induced by
modality-specific effects and therefore more likely to access relatively
‘pure’ representations of actions that generalize across modalities.
Note in contrast that in previous work (Oosterhof et al., 2010, Supple-
mentary Figs. 2 and 4) we did not find a similar asymmetry between
training and testing on trials with actions thatwere observed (without
concurrent action execution) or performed (without visual input).We
stress that although our simulations can be used as amodel to increase
the understanding of the potential contribution of pattern information
from different neural populations, it is not necessarily the case that
such a model represents brain function accurately at either the voxel
or at the neural level, and inferences at a neural population level
based on such a model should remain speculative.

What is the nature of these action-specific representations that
are common across action imagery and performance? While there is
an extensive literature on imagery in general, for the purpose of
interpreting our findings we distinguish three, not mutually exclu-
sive, possibilities: visual, motor, and amodal. According to a visual in-
terpretation, participants represented the imagined actions as visual
“pictures” through top-down control, and the resulting brain activity
patterns were similar to those when participants actually saw their
own hand perform the actions. Indeed, several studies have demon-
strated that imagined and observed pictures share a common repre-
sentation in early and high-level visual cortex. For example, imaging
and seeing the letters ‘O’ and ‘X’ elicit similar response patterns in
lateral occipital cortex (Stokes et al., 2009), different categories of
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objects elicit imagined-seen cross-modal patterns in ventral temporal
cortex (Reddy et al., 2010), and different locations of objects reveal
analogous cross-modal representations in early visual cortex (Cichy
et al., 2011). (Note however that the preceding studies all concerned
static stimuli and images in contrast to the dynamic content tested
here).

Alternatively, according to a motor interpretation, participants
represented the imagined actions as executing motor actions without
actually moving (Guillot and Collet, 2005; Decety and Grezes, 2006;
Johnson, 2000; Ramsey et al., 2010), and the resulting brain activity
patterns were similar to when participants executed the corre-
sponding action. This interpretation is consistent with findings that
executed and imagined hand movements elicit increased activation
in primary and secondary motor cortex of the contralateral hemi-
sphere (Lotze et al., 1999), which has been interpreted as possibly
reflecting similar neural substrates for motor execution and imagery.
Also consistent with this interpretation is a study that showed evi-
dence for a somatotopic organization in primary, supplementary and
pre-motor cortex when participants moved or imagined moving
their hands, feet, and tongues (Ehrsson, 2003).

A third alternative is an amodal representation, where actions are
represented neither visually nor motorically but on a more abstract
level (Pylyshyn, 2003). For example, findings that listening to action
verbs showed increased activation in Broca's area compared to
non-action verbs have been interpreted as evidence for involvement
in abstract action representation of this area (Tettamanti et al.,
2005). Other evidence comes from a study with congenitally blind
participants, in which listening to action sounds, compared to envi-
ronmental sounds, activated similar frontal and parietal areas as
when participants with normal vision observed actions visually,
which is consistent with findings supporting amodal action represen-
tations in these areas (Ricciardi et al., 2009).

As we noted earlier, these possibilities are not mutually exclusive
and different brain areas may represent actions differently. This ques-
tion is further complicated by the difference between the subjective
phenomenological (as reported verbally by participants, for example)
and the objective brain response (as measured with fMRI, for exam-
ple) aspects of consciousness generally (Lamme, 2006) and action
imagery specifically. Although imagery involves a subjective experi-
ence, behavioral experiments have shown that tasks that are thought
to require either visual (Kosslyn et al., 1978) or motor (Johnson,
1982) imagery yield behavioral effects that are similar to overt visual
or motor tasks, showing that subjective motor and visual imagery dis-
sociate in objectively measurable effects. Brain imaging studies have
also shown that different brain networks are recruited when partici-
pants are explicitly instructed to imagine performing or viewing ac-
tions (Pelgrims et al., 2009; Guillot et al., 2009; Sirigu and Duhamel,
2001; Decety, 1990; Kosslyn and Thompson, 1997). Altogether this
suggests that the distinction between motor and visual imagery rep-
resentations has objectively measurable correlates.

One might take the position that an action representation is visual
if imagery of that action activates visual areas, motoric if it activates
motor areas, and amodal if it activates other areas. Apart from simple
interpretational challenges (Poldrack, 2006), such a position is prob-
lematic, however, for more substantial reasons. First, differences in
activation within or across brain areas can be caused by trivial aspects
of the experiment. For example, if one were to perform visual imagery
and visual observation in an experiment where participants had their
eyes closed and open, respectively, then the overall activation in 3vi-
sual cortex may be decreased during the imagery condition because
there is no visual input to the participants, yet it does not indicate
that the visual cortex is not involved during visual imagery (Stokes
et al., 2009; Reddy et al., 2010; Cichy et al., 2011).

Second, brain areas active during visual andmotor imagery are not
identical to those involved during overt action observation and execu-
tion (Hanakawa, 2002; Ganis et al., 2004). This is not surprising given
that visual imagery may require top-down cognitive control and the
engagement of memory areas. Similarly, motor imagery may require
inhibitory processes that prevent imagined planned actions being
translated into actual movements. Therefore it is not straightforward
to interpret the visual andmotor aspects of the neural patterns associ-
ated with imagery of performed or observed actions.

Third, there is extensive evidence that individual neurons show a
response to multiple modalities, ranging from single unit responses in
rodents (Barth et al., 1995) and monkeys (Bignall and Imbert, 1969)
to humans (Mukamel et al., 2010). Responses from populations of
such neurons, as measured indirectly by fMRI cannot, by definition,
be considered as unimodal only.

Relevant for this third point, especially with respect to action
representations, is the finding of ‘mirror neurons’ in ventral premotor
cortex in the macaque (di Pellegrino et al., 1992). These neurons have
been shown to increase their firing rate when a macaque either
performed an action or observed the experimenter performing the
same action. Later studies showed neurons with similar properties in
the macaque anterior parietal (Gallese et al., 1996) and primary
motor cortex (Dushanova and Donoghue, 2010), and in human hippo-
campus and pre-supplementary motor cortex (Mukamel et al., 2010).

Imaging studies that considered similar action-specific coding across
the visual and motor modalities have investigated to what extent areas
in premotor, parietal and occipito‐temporal corticesmay represent spe-
cific actions similarly across the visual andmotor domains (Kilner et al.,
2009; Oosterhof et al., 2010, 2012; Lingnau et al., 2009; Dinstein et al.,
2008a; Dinstein et al., 2007; Chong et al., 2008). Results and conclusions
of these studies have been mixed—with some claiming evidence for
shared visuo-motor representations (Chong et al., 2008; Kilner et al.,
2009; Oosterhof et al., 2010, 2012) and others claiming no evidence
for such representations (Dinstein et al., 2008a; Dinstein et al., 2007,
Lingnau et al., 2009). The current results provide evidence that also sup-
port a unimodal representational account of the previous imaging find-
ings: if participants imagined performing or observing actions while
actively observing or performing actions (respectively), then the shared
response for viewing and executing specific actions may be due to
shared imagined-overt visual, motoric, or amodal coding.

We note that we only found evidence for imagined-overt cross-
modal coding in the anterior parietal cortex and not in other areas
such as the premotor and occipito‐temporal cortices that were iden-
tified in similar previous studies considering visuo-motor action rep-
resentations (Kilner et al., 2009; Oosterhof et al., 2010, 2012). The
conclusion that these other areas are not representing specific actions
during imagery cannot be drawn, however. First, statistical power to
detect imagery effects in these areas may have been too weak. Sec-
ond, the absence of an overt task may have affected the strength
of imagery representations. In the present study participants were
asked to imagine actions but not to perform any other task, while in
earlier MVPA studies (Oosterhof et al., 2010, 2012) that investigated
visuo-motor cross-modal coding, participants were required to re-
spond after certain observed trials, which might have led to deeper
encoding of the actions. We note that these considerations also pre-
vent meaningful interpretations of direct comparisons between the
present and other studies (e.g., Willems et al., 2010).

The current findings are the first demonstration that specific
imagined actions are represented similarly to overtly performed
and observed actions, and provide a potential mechanism for osten-
sible visuo-motor coding claimed in human action representa-
tion theories. The precise nature of these representations—visual,
motor, or amodal—and how they can be modulated by task require-
ments is still elusive, however. Because participants in our study
were instructed to both execute and view their actions (in the per-
form condition) or to imagine themselves executing and viewing
the actions (in the imagery condition), the present data cannot dis-
sociate these possibilities. One approach would be an experiment
where participants are instructed to perform, view, or view and
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perform, and imagine to perform, view, or view and perform, specif-
ic actions. The relative strength of several types of cross-modal cod-
ing (visual, motoric, and both, crossed with imagined and overtly
performed actions; cf. Kriegeskorte et al., 2008) could help in char-
acterizing the nature of action representations in different brain
areas and across different modalities.
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