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Functional magnetic resonance imaging (fMRI) provides a spatially accurate measure of brain activity.
Real-time classification allows the use of fMRI in neurofeedback experiments. With limited labelled
data available, a fixed pre-trained classifier may be inaccurate. We propose that streaming fMRI data
may be classified using a classifier ensemble which is updated through naive labelling. Naive labelling is
a protocol where in the absence of ground truth, updates are carried out using the label assigned by the
classifier. We perform experiments on three fMRI datasets to demonstrate that naive labelling is able to
improve upon a pre-trained initial classifier.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent times, data acquired by functional magnetic reso-
nance imaging (fMRI) have allowed for valuable insights into the
human mind, and into those processes which control and reflect
human behaviour.

While most fMRI approaches analyse the data off-line (after
scanning has been completed), more recently there has been
interest in the development and application of real-time fMRI
(rtfMRI) [1].

One application is neurofeedback, where a participant per-
forms a certain task while brain activity is measured, and feed-
back based on this activity is given in real time. In this way, the
participant may learn to exercise self-control of specific brain
regions, for example those involved in pain perception [5]. This is
typically achieved via a closed loop of brain computer interface
(BCI) [9,34,4].

As multivariate approaches have been shown to be more
sensitive than univariate approaches for off-line fMRI analyses
[30,13], it seems sensible to use the former for rtfMRI as well. The
efficiency and precision of rtfMRI for brain control has been
demonstrated by participants carrying out tasks such as navigat-
ing through computer-generated mazes [15], balancing a virtual
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inverted pendulum [7], predicting decisions in an economic game
[16], and moving an arrow towards a target [25]. fMRI classifica-
tion can be a fast and accurate component of the BCI loop for the
purposes of neurofeedback. The neurofeedback loop is sketched in
Fig. 1. The participant receives initial instructions and possibly
some stimuli. Next, the participant’s state of mind is measured
and classified. Based on the measured brain state, feedback is
given to the participant who may then attempt to adjust the brain
state to improve task performance.

To provide an accurate classification of the brain state, the
classifier should be properly trained. Given the limited amount of
time to collect individual fMRI data for the subject partaking in
the experiment, and the large ratio of features to instances, the
initially trained classifier may be of insufficient accuracy. It is
desirable that the classifier improves with time. Depending on the
information available for the updating of the classifier, the online
training may be done on labelled or unlabelled data. Previous
works assumed that the classifier is not updated with time [15,7],
or updated with labelled data [32]. In this study we are interested
in the possibility of using unlabelled data to improve on the
classification accuracy of the initially trained classifier, termed
semi-supervised learning [29,33,35]. This is the most natural and
hence useful scenario, because in certain experiments, there may
be no way to verify the true state of the brain. We propose to use
naive labelling, where the classifier is updated by adding the new
data point to the training set and taking the predicted label as the
true label. This approach should be taken with caution, guarding
against the possibility of a runaway classifier that progressively
learns ‘the wrong thing’ [3]. Our previous study suggests that
simple classifiers may benefit from semi-supervised learning [20].
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Fig. 1. The neurofeedback loop. Based on the classification output, the participant
is instructed to perform a mental exercise that will drive the brain pattern closer
to one corresponding to the desirable behaviour.

The rest of the paper is organised as follows. Section 2
discusses classifiers for real-time fMRI, including the random
subspace (RS) ensemble, and introduces naive labelling. The
dataset and methods are discussed in Section 3 with the results
being presented in Section 4. Section 5 concludes the paper.

2. Real-time classification of fMRI data
2.1. Classifier models for fMRI

Various classifier models have been used for fMRI classifica-
tion. Linear classifiers, including support vector machines (SVM)
with linear kernel [26] and linear discriminant analysis (LDA)
[18], are popular due to their speed and accuracy. Classifier
ensembles are deemed to be more accurate than individual
classifiers [19]. The random subspace ensemble (RS) is a classifier
ensemble method whereby ensemble members are trained on
feature subsets rather than on the entire feature set [14]. The
ensemble decision is based on majority voting. RS ensembles are
particularly suitable for datasets with a large feature-to-instance
ratio as they reduce the dimensionality of the feature set and
create diversity while retaining the number of instances for
training. It has been shown that RS ensembles work well for fMRI
data [23,24].

In online classification, every data point is classified as it
becomes available, and its true class label is recovered immedi-
ately after that. The classifier is updated by adding this point to
the training set, and recalculating the parameters. In the chosen
scenario, the true class label is assumed to be the one predicted
by the classifier. Applying real-time classification to fMRI neuro-
feedback presents new challenges. The number of training
instances is further reduced and the classifier must be capable
of working within a tight time constraint. The SVM [25] and
relevance vector machine (RVM) [16,15] are popular for real-time
classification of fMRI data. Alongside, simpler linear classifiers are
capable of providing fast and accurate results. In our previous
work, [32], we compared three online linear classifier models for
RS ensembles. The online linear discriminant classifier (O-LDC)
[21] was shown to outperform Rosenblatt’s perceptron and the
balanced winnow [28], both as individual classifiers and in an
ensemble. The question that we seek to answer in this study is
whether O-LDC benefits from semi-supervised learning where the
unlabelled data come as a sequence of brain volume images. We
will also explore RS ensembles of O-LDC classifiers for the same
problem.

2.2. Online linear discriminant classifier

The online linear discriminant classifier (O-LDC) is an adapta-
tion of the linear discriminant classifier. It is chosen in this study
because, in agreement with common wisdom [11], we found it to

be robust and accurate compared to other linear classifiers for
online fMRI (supervised) classification [32].

Let ¢ be the total number of classes, and let P be the prior
probability for class i, i=1,...,c. Assuming that the data for each
class come from a multivariate normal distribution with a class-
specific mean, u®, and a common covariance matrix, X, the
optimal discriminant functions g;(x), i=1,...,c, are calculated as

gi(%) = InPO 1@ x4 0" 5-1x

The object x is assigned the label corresponding to the largest
gi(X). In the online adaptation, the means and inverse covariance
matrix are updated after each data point. Let mg? be the estimate
of the mean for class i, where N; is the number of points from class
i thus far. The total number of points in the series is
N=N;+Ny+ ---+N.. Let Sy be the estimate of the common
covariance matrix calculated from the N observations. Suppose
that, after classification, the ‘true’ label of xy,; is recovered
as class k.! The recursive update for the mean of class k is
calculated as

(k)

(k)
Net1= W(Nkm,\,k +XN+1)-

The inverse covariance matrix for class k is updated as
o1 _ N+1 <51 Sy'zz"Sy! )
N+1= "N N ,

N(Nlé’:'l)+ZTsﬁlz

where z= x—m}ffk +1- The prior probabilities estimated as
P,(\’,) =N;/N are also updated. This adaptation is a version of the
recursive least squares (RLS) method minimising the negative log-
likelihood of the data using the class label as a latent variable. Like
RLS, the O-LDC update is lossless. This means that the recursively
calculated estimates of m%‘: and Sy coincide with these using all N
data points received hitherto.

2.3. Random subspace ensembles

Classifier ensembles are less sensitive to noise and redundant
features than single classifiers. The problems associated with
overfitting are therefore less prevalent in classifier ensembles.
This suggests that classifier ensembles are a good approach for
datasets with a large feature-to-instance ratio, such as that
typically found in fMRI data.

A good ensemble should be made up of diverse classifiers. The
random subspace method generates diverse classifiers by training
each ensemble member on a different feature subset. Define
X =[x1,...,x:]" to be the set of n features (voxels). To create a
RS ensemble, we randomly select L feature subsets of size M by
drawing without replacement from a uniform distribution over X.
These subsets make up the feature sets for the L classifiers. Each
of the L classifiers are trained on the respective M features and a
final ensemble decision is made by majority vote.

There are many benefits to RS ensembles for fMRI data.
Reducing the number of features per classifier reduces the like-
lihood of overfitting. Also, the algorithm is computationally
inexpensive due to the reduced number of features per ensemble
member. RS ensembles have been shown to perform well for off-
line fMRI data [23,24], and in [32] we showed the feasibility of the
RS ensemble as a technique for online classification of fMRI data.
Here we take the challenge a step further. While previously it was
assumed that the true labels became available straight after the
classifier (or the ensemble) labelled the data point, here we

! Since we are interested in semi-supervised classification, we will take the
label suggested by the classifier as the ‘true’ label.
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assume that the true labels of the brain states are not available
beyond the short training session prior to the main experiment.

2.4. Naive labelling

Without being able to pass the true class labels to the
classifier, we have the choice of updating the classifier using the
predicted naive labels, or using the fixed, pre-trained classifier
throughout. This scenario is particularly relevant for neurofeed-
back experiments. A classifier which has been trained off-line on a
small dataset will be likely to show a high error rate. Training
the classifier using the naive labels does not come without risk.
The classifier may be lead astray should updates occur using
incorrect class labels. This may lead to ‘runaway’ behaviour where
the classifier becomes less accurate the more data it sees [3].

The chances of avoiding runaway classifiers are related to the
amount of off-line training data and on how well the underlying
data distribution model is guessed when designing the classifier
[20]. It is expected that the lower the amount of training data, the
higher the chances of a runaway classifier appearing in the
ensemble. Linear discriminant classifiers rely on a simple assump-
tion of Gaussianity of the data, which is often not met in practice.
However, even with assumptions not holding, linear classifiers
have been found to be surprisingly accurate [11]. As noted in [18],
LDA and linear SVM actually do better than non-linear classifiers,
possibly because the latter are more prone to overfitting. While a
runaway classifier is a realistic possibility if naive labelling is
used, our hypothesis is that a sufficient number of classifiers
within the ensemble will be improved beyond their off-line
accuracy, and thus the ensemble will counteract any adverse
effects on an individual ensemble member.

3. Material and methods
3.1. Datasets

We use three emotion based datasets which are described
below. A summary of the datasets is given in Table 1.

Emotion_Negative (EN1 and EN2) Data: EN1 and EN2 are two
runs with different participants in the same experiment. Partici-
pants were instructed to up-regulate their target region activity
for periods of 20 s (‘up’; 10 TR) using negative emotional imagery,
alternating with baseline periods of 14 s (‘rest’; 7 TR). There were
12 blocks of up-regulation and rest. Classification task is to
distinguish between periods of emotion and periods of rest. This
simple task is seen as a step towards classification of emotions,
which is achieved with the third dataset, EB.

Emotion_Both (EB) Data: A sequence of fMRI brain scans was
obtained from a single run. The participant viewed 12 blocks of
images of positive valence type, 12 blocks of neutral valence and
12 blocks of negative valence. Each block of images lasted for a
period of 6s (four pictures presented for 1.5s) followed by a
period of fixation (12 s duration).? Fixation TRs are removed from
the dataset. Classification task is to distinguish between positive,
negative and neutral emotion.

Data for all three datasets were collected on a 3 Tesla Philips
Achieva MR scanner (TR=2s, TE=30ms, 30 slices, in-plane
resolution 2 x 2 mm?, 3 mm slice thickness). Slices were posi-
tioned such that the bottom slice was 30 mm ventral to the

2 The images were selected from a benchmark database, International
Affective Picture System (IAPS) [27], where each image has been rated on scales
from 0 to 10 on two dimensions: arousal (calm to excited) and valence (negative
to positive).

Table 1
Summary of the three fMRI datasets.

Name Volume size # Voxels Classes # Instances
EN1 60 x 31 x44 28426 2 203
EN2 59 x 32 x 44 28662 2 203
EB 60 x 62 x 45 29865 3 108

anterior commissure and angled to encompass all of the ventral
prefrontal cortex.

Preprocessing of the data was performed using Brainvoyager
QX (Braininnovation, Maastricht, The Netherlands). The data were
corrected for intra-subject angular and translational motion and
filtered to remove long-term drift. It is noted that data were
preprocessed off-line. While it has been shown that head move-
ment correction can be performed in real-time [2] and the other
steps could quite likely also be performed in real time, we stress
that the results presented here do not consider the effects of
preprocessing on classification results, which presents another
challenge for applying this approach to real-time fMRIL.

Class labels are calculated by using a box-car model offset
from the stimuli by 1 TR. By doing this we maintain a simple
model whilst accounting for the haemodynamic delay in the
BOLD signal. In doing this, we lose one instance from each dataset,
hence the figures in the final column of Table 1 not matching the
number of TRs. For each data a voxel mask is derived. The
resulting number of voxels is indicated in column 3 of Table 1.

3.2. Experimental protocol

Each dataset was then split into two: T, a dataset used for off-
line (batch) training, and S, a dataset which will be prepared and
presented to the classifier as online (streaming) data. We decided
to shuffle and sample from the data. We note that this will break
the autocorrelation of the fMRI signal; however, in order to
explore semi-supervised learning for streaming fMRI data, the
method first needs to be shown to work for stationary, indepen-
dent and identically distributed (i.i.d.) data. This issue is discussed
later in relation to presenting the online data stream.

Having selected T, we oversample the remaining data to
construct S with 500 objects. This is the closest approach to
construct i.i.d. sets.

Following the recommended procedure by De Martino et al.
[6], we pre-selected a fixed amount (K) of voxels. This is achieved
by taking the K voxels with maximum activation, based on T. Both
training and testing data are normalised, using the mean and
standard deviations calculated for T.

We consider three individual classifier and ensemble
scenarios:

Scenario A: no updates (fixed): We train a ‘fixed’ off-line
random subspace ensemble on T alone. The online data points
from S are then presented one at a time. The classifiers are not
updated during the online phase. We measure the running
classification accuracy, which at time t is the ratio of correctly
labelled data points out of the t seen data points. This allows
us to compare whether using naive labelling is better than the
no-action scenario.

Scenario B: supervised updates (supervised): We train the batch
version of the classifier on T. The true class labels are assumed to
be immediately available after classification is made in the online
training. As each point from S is presented the current classifier is
trained and tested on the new data point.

Scenario C: unsupervised updates (naive): Again we train
the batch version on T. We assume that class labels for S are
unavailable. The classifier is re-trained by augmenting the
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training data with the current observation and the label
proposed by the classifier as the true label.

We conducted experiments with the following parameters
values: the number of pre-selected voxels K=500, ensemble size
L=[5,9,11] and feature set cardinality M=[20,50,100]. The car-
dinality of the training sets was |T|=[20,40,100]. Due to the
random nature of the feature selection for the RS ensemble,
experiments were repeated 50 times, and the results were
averaged.

For each scenario, we also considered the error rates of the
individual classifiers which make up the ensembles.

Computational costs of the preprocessing and classification are
not assessed quantitatively here. We do not expect this to form a
major challenge; however, given that our classifiers have rela-
tively low computational costs, and that earlier studies have
demonstrated the feasibility of real-time classification
[15,7,16,25] while processing speed of computers is increasing
over time.

3.3. Kappa-error diagrams

Kappa-error diagrams are now an accepted tool for comparing
classifier ensembles. Each pair of classifiers in the ensemble
generates one point on the diagram. The x-axis of the diagram
is the diversity of the pair, x. Lower values of x indicate higher
diversity. The y-axis shows the averaged error rate of the pair.
Ensembles whose ‘clouds’ of points are situated closer to the
bottom left corner of the diagram are usually more accurate.

Kappa measures the level of agreement between the classifiers
while correcting for chance [8]. The pairwise « is defined as follows:

2(N11N00_N01 NIO)
= (NTT - NTO)(NT0 1-NOO)  (NTT 1 NOT)(NOT - N0Oy’

M

where N'! is the number of testing examples on which both
classifiers are correct, where N° is the number on which both
classifiers are wrong, N'° is the number on which classifier 1 is
correct and classifier 2 is wrong, and N°! is the number where
classifier is wrong and classifier 2 is correct.

We seek to answer the following questions:

Individual vs ensemble: For classification of unlabelled fMRI data,
we ask whether an individual classifier, or classifiers in an ensemble
framework yield better results. In line with previous and existing
research we expect classifier ensembles to have higher accuracy than
an individual classifier. This may not be true if the individual
classifiers deteriorate progressively. At some point the ensemble will
become worse than the average individual classifier.

Fixed vs untrained updates: For streaming fMRI data, we want
to know whether it is advantageous to update the classifier using
naive labels or whether this is detrimental to the ensemble and a
fixed pre-trained classifier is more accurate.

4. Results

We calculated the cumulative error progression for each time
step. For time-step t the cumulative error is Zj;oe(j)/n, where
e(j) is 0, if the classifier/ensemble has labelled the point at time j
correctly, and 1, otherwise. The ‘final’ errors for the three datasets,
taken at time t=500 are summarised as colour plots in Figs. 2-4.
For each combination of M and |T|, we generated ensembles of
L=[5,9,11] classifiers, giving a total of 25 individual classifiers.
The individual error is taken as the mean error of these 25
classifiers at time t=500. Each column of the table represents a
value of L, with the last column showing the mean error of the
individual classifiers, titled ‘I'. Each row of the table corresponds
to a value of |T|. Within each coloured grid, rows correspond to

values of M, and columns to the three RS ensemble methods, fixed
(F), naive (N) and supervised (S).

As expected, the supervised classifier is superior to the fixed
and naive classifiers. We compare the final error scores at t=500
for the fixed ensemble and the naive ensemble in order to see
which scenario works best for unlabelled data. The results of this
comparison are summarised in Table 2. A ‘+’ indicates that the
naive ensemble performs better than the fixed ensemble. A ‘-’
indicates that the naive ensemble performs worse than the fixed
ensemble. Significance was calculated using a paired t-test,
uncorrected for multiple comparisons. All statistical analyses in
this paper were carried out using the Matlab statistics toolbox.3
Significant results at o = 0.05 are indicated by & and ©.

For these parameters the results suggest that the naive
ensemble is on a par or better than the fixed ensemble (21,
23+, 35— and 4©). For M > 50, the naive ensemble performs
much better than the fixed ensemble, (20®, 19+, 13— and 20).
Dataset EB was the most ‘difficult’ for the classifiers, as this is
where different emotions are being recognised. The other chal-
lenge with this dataset is the addition of a third class.

In order to understand the mechanism of improvement
through naive labelling ensembles, we look at the progression
of the error over time and the corresponding time-trajectory on
the kappa-error diagram. Fig. 5(a) shows the error plot for EB2
with L=11, M=100 and |T|=100. The plot is taken from t=25
onwards, as at low t there are large fluctuations in the cumulative
error leading to the plot appearing noisy and unstable. If the plot
was to be taken from t=0, then the plots for all scenarios would
start from one point, as the same off-line classifier is used in each
case. The marker and line colour indicate the base classifier, a
solid line indicates the classifier ensemble whilst a dashed line
indicates the individual classifier.

We expect to see the error rate of the fixed classifier to remain
constant over time. The error rate of the supervised classifier will
drop as the classifier sees more data. We hope to see the naive
classifier follow the same pattern as the supervised classifier, in
that the error will drop as t increases, thus showing the naive
labelling strategy to be beneficial.

The figure shows the dashed lines, representing the individual
classifiers, above the corresponding solid lines. This indicates that
the classifier ensembles outperform the individual classifiers. The
error of the supervised ensemble is seen to drop over time and is
easily the most accurate classifier ensemble, whilst the error of
the fixed classifier ensemble remains constant. The naive ensem-
ble is seen to improve over time, with significantly better results
than the fixed ensemble.

Each ensemble can be plotted as a cloud of points in the
kappa-error diagram. There is one ensemble at every time point t.
It is interesting to see how the cloud shape and position changes
with time. For example, the cloud for the fixed ensemble is
expected to float about the initial point, as the only difference
from one time point to the next will be the estimate of kappa and
the individual errors. The classifier and the ensemble parameters
do not change, hence the movement will be only a small
fluctuation. The supervised ensemble, on the other hand is
expected to drop down the plot, indicating that the individual
accuracies improve with more data being seen. It is curious how
the diversity of the ensemble progresses, i.e., whether the cloud
will move to the left (larger diversity) or right. Instead of plotting
the entire clouds of points, we decided to plot the trajectories of
the centres. The endpoint of each trajectory is indicated with a
marker. A good classifier ensemble will be both accurate and
diverse, and thus appear near the bottom left hand corner of the

3 http://www.mathworks.co.uk
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Fig. 2. Final cumulative error scores (%) for the EN1 dataset. The range of final error scores is indicated by %. Error scores are coloured from blue through to red
representing low and high errors, respectively. L is the ensemble size. M is the cardinality of feature subsets (values of M are shown as rows of each coloured grid). |T| is the
cardinality of the off-line training set. ‘F’, ‘N’ and ‘S’ correspond to fixed, naive and supervised ensembles. ‘I' corresponds to mean individual error of classifiers for a given M
and |T|. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Final cumulative error scores (%) for the EN2 dataset. The range of final error scores is indicated by %. Error scores are coloured from blue through to red
representing low and high errors, respectively. L is the ensemble size. M is the cardinality of feature subsets (values of M are shown as rows of each coloured grid). |T| is the
cardinality of the off-line training set. ‘F’, ‘N’ and ‘S’ correspond to fixed, naive and supervised ensembles. ‘I' corresponds to mean individual error of classifiers for a given M
and |T|. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

L=5 L=9 L=11 I
F N s F N s F N s
=20, 20 20 20
10.16%- 5, 50 50 50
=40 5, 20 20 20
8.17%= 50 50 50 50
64.09% 100 100 100 100
=100 5 20 20 20
L08%- 5, 50 50 50

Fig. 4. Final cumulative error scores (%) for the EB dataset. The range of final error scores is indicated by %. Error scores are coloured from blue through to red representing
low and high errors, respectively. L is the ensemble size. M is the cardinality of feature subsets (values of M are shown as rows of each coloured grid). |T| is the cardinality of
the off-line training set. ‘F’, ‘N’ and ‘S’ correspond to fixed, naive and supervised ensembles. ‘I' corresponds to mean individual error of classifiers for a given M and |T|. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

diagram. As we plot the trajectories of the ensembles over time, if Fig. 5(b) shows the kappa-error trajectories corresponding to EB2
the ensemble improves, we expect to see the trajectory progress with L=11, M=100 and |T| = 100. The trajectory of the supervised
towards the bottom left corner. ensemble tracks down as accuracy increases. The diversity decreases
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slightly, this suggests that all classifiers within the ensemble are
being driven towards the optimal classifier, thus are becoming more
similar. The fixed ensemble, as expected, shows very little progres-
sion. The naive ensemble shows an increase in both accuracy and
diversity, both of which are desirable characteristics.

Fig. 6(a) and (b) show the typical patterns of the individual
classifiers for the fixed and supervised ensembles, respectively: the

Table 2

Direct comparison of fixed and naive ensembles. ‘+’ and ‘-’ respectively, represent a
‘win’ or ‘loss’ by the naive ensemble. A circle surrounding the + or — indicates that
the result is statistically significant at significance level & = 0.05. L is ensemble size,
M is cardinality of feature subsets, |T| is cardinality of training dataset.

IT| M EN1 EN2 EB
20 40 100 20 40 100 20 40 100
L=5
20 - - e - - - - -
50 + ® + + ® o - + +
100 - + ® - ® ® + +
L=9
20 - - - - - - - - -
50 - ® © + ® - + + -
100+ ® ® ® ® ® - + -
L=11
20 + - + - - - +
50 + ® - ® ® + - - +
100 o ) + ® ® - + -
a
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error of the fixed classifiers remains constant while the error of the
supervised classifiers drops over time.

For the naive classifiers, we would like to see a similar shape to
the supervised classifier. Fig. 7(a) and (b) show two cases of the
patterns of the individual naive classifiers. In both cases the naive
ensemble performed significantly better than the fixed ensemble.
Fig. 7(a) is a case where the naive classifiers show a desirable
learning pattern, improving over time. In Fig. 7(b), some classi-
fiers are shown to display runaway behaviours. What is interest-
ing in this case is that the naive ensemble still performs better
than the fixed ensemble, indicating that the ensemble environ-
ment constrains the runaway behaviour.

4.1. Individual vs ensemble

From Figs. 2-4 we compare the error of the individual classifiers
with the error of the ensembles. The error rate for the ensembles can
be seen to be lower. This matches the hypothesis that a classifier
ensemble is more accurate than an individual classifier. In Fig. 5(a),
the error progression of the individual classifiers can be directly
compared with the classifier ensembles. The classifier ensembles are
seen to be more accurate than their individual counterparts.

4.2. Fixed vs unsupervised updates

From Table 2 we are able to directly compare the results from
the fixed classifier with those of the naive ensemble. For the
correct parameters the naive ensemble unsupervised update

Error

200 300
Observations

b
0.4
Fixed
% Naive
0.3 A Onli
serst Online
2 02
w
0.1
0
500 0.6 0.8 1

kappa

Fig. 5. Figures for EN1 data taken with ensemble size L=11, feature set cardinality M=50 and training dataset cardinality |T| =40. (a) Error progression. Solid line
indicates classifier ensembles. Dotted line indicates individual classifiers. Plot illustrates changes in error over time. (b) Kappa-error progression. Kappa-error progression
plots the changes in pairwise accuracy and diversity as the classifier ensembles learn over time.
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Fig. 6. Typical error progression of individual classifiers (dataset: EN1, size of ensemble: L=5, cardinality of feature subsets: M=100, cardinality of training dataset:
|T| = 20). (a) Error rate of fixed classifiers remains constant. (b) Error rate of supervised classifiers drop over time.
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Fig. 7. Comparison of different individual classifier progressions for the naive ensemble. (a) Dataset EN1, size of ensemble L=9, cardinality of feature subsets M=100 and
cardinality of training dataset |T| =40. (b) Dataset EN2, size of ensemble L=11, cardinality of feature subsets M=50 and cardinality of training dataset |T| = 20.

strategy is beneficial to the ensemble. Specifically, when the
cardinality of the feature set is M >50 the naive ensemble
performs better than the fixed ensemble. The method is tested
on two 2-class datasets and one 3-class dataset. The method
performs best for the 2-class datasets, when an accuracy of the
initial fixed ensemble is higher.

5. Conclusion

We have shown that classifier ensembles are more accurate
than individual classifiers. Our experiments also show that given
an appropriate choice of parameters, classifiers updating using
the naive labelling strategy perform well within an ensemble
framework. In particular, on simple 2-class datasets. We have
shown that for sufficient training data, a naive classifier ensemble
performs significantly better than a fixed, pre-trained classifier
ensemble.

During a real-time fMRI experiment, there is the potential for
concept drift. An online classifier working in this environment is
required to be capable of updating and adapting during the course
of the experiment. Naive labelling offers an intuitive solution to
this problem.

In our experiments we have treated the data as i.i.d., though this
is not strictly the case for fMRI in general. This approach serves as a
first step towards semi-supervised learning for streaming fMRI data.
The non-i.i.d. case raises new questions. Autocorrelations and the
non-stationary nature of streaming fMRI data may weight and ‘pull’
an online classifier in a certain direction, encouraging runaway
traits. To counter this we may harness the correlative properties of
the fMRI signal within the classifier, and thus use the multiple
instances to our benefit. Future work includes using the naive
ensemble for streaming fMRI data in order to simulate a real-time
scenario. More comparisons with other classifiers such as the SVM,
and using different base classifiers with the naive update strategy
will provide further insight into the potential applications of the
method.
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