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Abstract

■ Major theories for explaining the organization of semantic
memory in the human brain are premised on the often-
observed dichotomous dissociation between living and non-
living objects. Evidence from neuroimaging has been interpreted
to suggest that this distinction is reflected in the functional
topography of the ventral vision pathway as lateral-to-medial
activation gradients. Recently, we observed that similar activation
gradients also reflect differences among living stimuli consistent
with the semantic dimension of graded animacy. Here, we
address whether the salient dichotomous distinction between
living and nonliving objects is actually reflected in observable
measured brain activity or whether previous observations of a
dichotomous dissociation were the illusory result of stimulus
sampling biases. Using fMRI, we measured neural responses

while participants viewed 10 animal species with high to low
animacy and two inanimate categories. Representational simi-
larity analysis of the activity in ventral vision cortex revealed a
main axis of variation with high-animacy species maximally dif-
ferent from artifacts and with the least animate species closest
to artifacts. Although the associated functional topography
mirrored activation gradients observed for animate–inanimate
contrasts, we found no evidence for a dichotomous dissocia-
tion. We conclude that a central organizing principle of human
object vision corresponds to the graded psychological property
of animacy with no clear distinction between living and nonliving
stimuli. The lack of evidence for a dichotomous dissociation
in the measured brain activity challenges theories based on this
premise. ■

INTRODUCTION

Evidence for the existence of an animate–inanimate
division in the human ventral vision pathway has been
well documented in neuropsychology (Warrington &
Shallice, 1984), electrophysiology (Kiani, Esteky, Mirpour,
& Tanaka, 2007), and neuroimaging (Kriegeskorte, Mur,
Ruff, et al., 2008; OʼToole, Jiang, Abdi, & Haxby, 2005;
Hanson, Matsuka, & Haxby, 2004). This division is associ-
ated with distinctive brain activity topographies in ventral
temporal (VT) cortex, lateral occipital (LO) cortex, and STS
(Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza,
2009; Chao, Haxby, & Martin, 1999), with lateral VT, supe-
rior LO, and STS showing more activation for animate
objects and medial VT and inferior LO showing more acti-
vation for inanimate objects.
Several theories have been proposed to account for

this organization. Modality-specific accounts, such as
the sensory-functional hypothesis (SFH; Allport, 1985;
Warrington & Shallice, 1984), propose that it arises from
an interaction between (1) the uneven distribution of
sensory and motor properties central to different cate-

gory domains and (2) neural representations that are
distributed across property-specific cortical fields. In con-
trast, the domain specificity hypothesis (Caramazza &
Mahon, 2003; Caramazza & Shelton, 1998) proposes that
evolutionary forces requiring efficient processing of im-
portant category domains led to the development of
mental modules that are dedicated for representing spe-
cific category domains (see also Kanwisher & Dilks,
2013). Some (Mahon & Caramazza, 2009; Martin, 2007)
have proposed a hybrid model that incorporates both
domain-specific and property-based representations.
And others have proposed that this organization arises
from differences in retinal eccentricity biases across cate-
gories (Levy, Hasson, Avidan, Hendler, & Malach, 2001).

Although the animate–inanimate distinction is a major
feature of the representational space in the ventral vision
pathway, it is not the only one. Multivariate pattern
(MVP) analyses of functional neuroimaging data have
indicated that a broad range of object categories evoke
specific distributed patterns of neural activity (Connolly,
Guntupalli, et al., 2012; Eger, Ashburner, Haynes, Dolan,
& Rees, 2008; Kriegeskorte, Mur, Ruff, et al., 2008;
OʼToole et al., 2005; Hanson et al., 2004; Haxby et al.,
2001) and that these patterns have a common basis across
individuals (Haxby et al., 2011).Within the animate domain,
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our previous work (Connolly, Guntupalli, et al., 2012)
showed that patterns of response in LO and VT cortex
could reliably differentiate animal species, including coarse
distinctions, such as primates versus birds, and fine dis-
tinctions, such as monkeys versus lemurs. More surpris-
ingly, using multidimensional scaling (MDS), we found
that the dominant dimension was a continuum, which we
interpreted as spanning the abstract psychological dimen-
sion of animacy from “most animate” (primates) to “least
animate” (insects). This continuum was associated with a
cortical topography similar to the topography described
for the animate versus inanimate distinction, with patterns
of response for “less animate” species similar to patterns for
inanimate categories from other studies (Mahon et al., 2009;
Martin, 2007; Chao et al., 1999). This pattern suggests that
the animate side of the animate–inanimate division is really a
continuous dimension and that the “least animate” animals
may be close to the representation of bona fide inanimates.

Here, we test the hypothesis that the neural represen-
tational space in the ventral pathway is dominated by a
continuous dimension from most animate to least ani-
mate to inanimate categories. Our question is whether the
inanimate stimuli have distinct representations beyond
the end of this continuum or do they have representa-
tions similar to the animal species with “low animacy.”
We define level of animacy as the degree of similarity to
the animate prototype, which we assume to be humans.
Thus, animals that are phylogenetically close to humans,
such as monkeys, rank higher on the animacy scale than
more distant relatives such as fish. We do not expect an
exact match based on the amount of shared genetic
material, however, because the relevant properties of
animate entities such as perceived intelligence and socia-
bility do not always predict genetic similarity. For example,
creatures like dogs may rank higher than some less famil-
iar primate cousins—an effect we observed in a previous
study in which dog faces were closer to human faces than
were monkey faces in the neural representational space
(Connolly, Gobbini, & Haxby, 2012).

The notion of graded animacy is not new. The classical
Greek philosopher Aristotle described an animacy hierarchy
in his treatise On the Soul (Latin:De Anima; Aristotle, 1986)
in which he placed plants at the very bottom, followed by
the simple animals like worms, and proceeding through
the higher animals with humans near the top—exceeded
only by the gods. Ranking of animals and objects accord-
ing to the abstract notion of animacy is a well-known
phenomenon in linguistics in which animacy hierarchies
constrain the rules of grammar (Young & Morgan, 1987).
The operationalization of animacy in this study is based
on our own intuitive rankings of animals along this contin-
uum, which we presume to be in line with both common
intuition and cross-cultural folk taxonomies (Atran, 1998).

Our goals for this study were (1) to replicate our pre-
vious findings an animacy continuum in object vision cor-
tex (Connolly, Gobbini, et al., 2012) and (2) to determine
whether a sharp boundary exists between the “least

animate” living stimuli and the inanimate objects. Our
stimuli were images of animal species with varying levels
of animacy—primates, quadruped mammals, birds, fish,
invertebrates—and of two inanimate categories of tools
(Figure 1A). We measured the patterns of neural re-
sponse to these stimuli with fMRI and analyze the results
using a variety of MVPA techniques to characterize the
high-dimensional neural representational space.

METHODS

Stimuli

All image stimuli were collected online from the follow-
ing 12 categories: (1) humans, (2) chimpanzees, (3) cats,
(4) giraffes, (5) pelicans, (6) warblers, (7) clownfish, (8)
stingrays, (9) ladybugs, (10) lobsters, (11) hammers, and
(12) keys (see Figure 1A). These categories could be
ranked and grouped based on a priori level of animacy
from highest to lowest as primates, quadruped mammals,
birds, fish, invertebrates, and tools. Within each level of
animacy, we also tried to control for real-world size, so
that a typically large object is paired with a small object
in each level. This was done to eliminate a potential con-
found between levels of animacy and real-world size
(Konkle & Oliva, 2012). To minimize the effect of low-
level image statistics on our early visual area signals, we
first tiled the images then randomized the size of the
individual images for each row (Figure 1A). There were
20 different images within each category. One tiled image
was created based on the same image, and one was based
on the left-right mirrored version. There were 40 images
for each category, resulting in 480 tiled images in total
for the experiment. Each presentation was a randomly
selected image from the image pool. Each visual stimulus
was presented at about 13° × 13° visual angles to partici-
pants in the fMRI scanner.

Behavioral Judgments

For each stimulus category in the experiment, we collected
behavioral judgments using Amazonʼs Mechanical Turk
(https://www.mturk.com). Forty anonymous raters were
recruited for each test. Raters saw three images from dif-
ferent categories lined up on the same screen and were
required to choose the odd one out based on general
object category. Each triplet (of 220 possible ones)was rated
by four different individuals. We scored the results by cre-
ating a stimulus category by stimulus category dissimilarity
matrix (DSM), and for each image judged as odd, we added
one to the two cells corresponding to the dissimilarity
between the odd image and the other two images.

fMRI Participants

Eleven adult participants (seven men) from the Dartmouth
College community participated in the experiment. All
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participants provided informed consent and were cleared
for safety in MRI scanning before the experiment. Par-
ticipants were paid for their time. All experimental pro-
cedures and consent materials were approved by the
institutional review board of Dartmouth College, the
Committee for the Protection of Human Subjects.

Procedure

For each trial, three imageswere shown consecutively to the
participants. Each image was presented for 500 msec with-
out gaps between images, and events were followed by a
4500-msec ISI. During image presentation, a fixation cross
appeared at the center of the screen. Participants were in-
structed to pay attention to the images and were free to
move their eyes while performing a simple 1-back task for
all image triplets. If the last image in the triplets belonged
to the same category as the previous two, participants were
asked to report “same” by pushing the response button in
the scanner, otherwise to report “different.” The mismatch
trials and blank trials—where only a fixation cross appeared
for 6 sec—were pseudorandomly placed in the experiment
for participants to maintain attention. There were seven
functional acquisition runs. Within each run, Type 1, Index
1 sequence for first-order counterbalancing of 14 trial types

(12 categories, 1 mismatch trial, and 1 blank trial) was cre-
ated for run-wise presentations (Aguirre, 2007; Finney &
Outhwaite, 1956). Each trial type was repeated six times.
In addition, three leading dummy trials and one trailing
dummy trial were added, resulting in 88 trials per run.

Image Acquisition

Brain images were acquired using a 3-T Philips Achieva
Intera scanner with a 32-channel head coil. The functional
imaging used gradient-echo EPI with SENSE reduction factor
of 2. The MR parameters were echo time/repetition time =
35msec/2000msec, flip angle=90°, resolution=3×3mm,
matrix size of 80 × 80, and field of view = 240 × 240 mm.
There were 42 transverse slices with full-brain coverage,
and the slice thickness was 3 mm with no gap. Slices were
acquired in an interleaved order. Each of the seven func-
tional acquisition runs included 264 functional acquisitions
and 12 dummy acquisitions for a total time of 552 sec per
run. At the end of each experiment a single, high-resolution
T1-weighted (echo time/repetition time = 4.53 msec/
9848 msec) anatomical scan was acquired with a 3-D turbo
field echo sequence. The voxel resolution was 0.938 ×
0.938 × 1.0 mm with a bounding box matrix of 256 ×
256 × 160 (field of view = 240 × 240 × 160 mm).

Figure 1. Experimental design, main behavioral and neural findings. (A) We tested two inanimate—keys and hammers—and 10 animate categories
that spanned the range of animacy from humans and chimpanzees to ladybugs and lobsters. Tiled stimulus arrays were used to mitigate any
influence of category-specific biases in the retinal image. (B) Left: The DSM derived from behavioral judgments shows a distinct separation of
animate and inanimate objects with a secondary axis reflecting animacy among the animates. Right: Classical MDS of behavioral DSM. (C) Left:
Neural similarity structure derived from activity in LO cortex shows no evidence of a clear animate–inanimate division. Right: MDS derived using
STATIS. δ = dissimilarity; λ = eigenvalue of each PC; τ = inertia for each PC expressed as percentage of variance accounted for. Ellipses represent
95% confidence intervals for the factor scores based on bootstrapped data resampling.
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Image Preprocessing

To reduce noise related to participantsʼ head movements
and scanner drift, functional images were preprocessed
using the following steps: First, images were corrected
for slice acquisition time because of interleaved slice order
within each functional acquisition. Second, participantsʼ
head movements were corrected by spatially registering
all functional images to the last functional acquisition,
which was closest in time to the anatomical high resolution
scan. Third, data were despiked to remove signals unlikely
to be physiological activities. Fourth, each functional
acquisition run was detrended using up to third-order poly-
nomials to remove any scanner drift, and motion param-
eters were also regressed out. Stimulus-specific BOLD
signal response patterns were estimated using the general
linear model for each run separately, resulting in 12 full-
brain beta patterns for each of seven runs for each par-
ticipant. The functional data were not spatially smoothed.
All preprocessing steps were performed using AFNI (Cox,
1996).

Surface Mapping

Brain surfaces for each participant were generated using
FreeSurferʼs recon-all software (Fischl, 2012). Surfaces
were transformed into AFNI/SUMA format and resampled
to a standard surface mesh grid at various resolutions.
The preparation of the surfaces in this manner was facil-
itated using a wrapper script (mvpa2-prep-afni-surf ),
which itself is freely available through PyMVPA. The sur-
faces were created from the T1-weighted anatomical
images. The mapping of functional data and results from
volume space to surface space was done using AFNIʼs
3dVol2Surf program. The mapping of data from surface
to volume was done using AFNIʼs 3dSurf2Vol program.

Pattern Classification

We used linear support vector machine (SVM; Chang &
Lin, 2011; Cortes & Vapnik, 1995; implemented in PyMVPA,
Hanke et al., 2009) for all classification analyses with leave-
one-run-out cross validation strategy.

Whole-brain Surface-based Searchlight

Conventional whole-brain searchlight analysis assigns a
desired computation to a spherical local ROI centered
on a given voxel and iterates the same computation
through all the voxels in the brain volume (Kriegeskorte,
Goebel, & Bandettini, 2006), mapping the results of
some analysis back to the center voxel. Although this
method is excellent for mapping informational content
throughout the brain volume, it runs the risk of including
voxels in the same searchlight that are not actually near

to each other on the cortical manifold, for example, voxels
on either side of the sylvian fissure. Instead of a volume-
based searchlight, here we use a surface-based searchlight
(Oosterhof, Wiestler, Downing, & Diedrichsen, 2011;
Oosterhof, Wiggett, Diedrichsen, Tipper, & Downing,
2010), which defines each local ROI centered on a surface
node from a standard surface mesh (Fischl, 2012). For
each surface node, the algorithm identifies the set of
neighboring surface nodes and selects their correspond-
ing voxels from the participantʼs native brain volume to
define the searchlightʼs patterns. The results of the multi-
variate calculation are then mapped back to the cor-
responding central surface node. This method takes
advantage of the surface anatomical alignment across par-
ticipants and defines more restricted searchlight ROIs
containing only voxels that are adjacent on the cortical
manifold, as distances between nodes on the surfaces
are computed along the cortical surface rather than using
a Euclidean measure as used in volume-based approaches.
Searchlight volumes were restricted to include 100 neigh-
boring voxels per central surface node. For the definition of
searchlight centers, we used a standard surfacemeshwith a
resolution corresponding to a linear icosahedron tessella-
tion with 32 linear divisions of each of the 20 triangles of
a standard icosahedron (see AFNIʼs MapIcosahedron). This
resolution results in 20,484 surface nodes for each full-
brain surface reconstruction, which is close to the resolu-
tion provided by 3 mm isotropic voxels with about 2.5 mm
between node pairs. For the definition of the surface nodes
that make up a local neighborhood, we used a higher-
resolution standard mesh with an icosahedron tessellation
with 128 linear divisions with 327,684 nodes per full brain
surface reconstruction. Searchlight analyses were imple-
mented using PyMVPA (Hanke et al., 2009).
For the first searchlight analysis, we computed the

correlation between the behavioral DSM and individual
participantʼs voxel DSM within each local searchlight,
and we iterated this process for the whole-brain surface.
We then performed one-sample t test against zero for
each surface node across all participants to generate a
group map (Figure 2A).
For the second searchlight analysis (ROI definition),

we performed 12-way classification using SVM classifiers
with a leave-one-run-out cross-validation strategy within
each local searchlight, and we iterated this process for
the whole-brain surface. We then performed a one-sample
t test against chance (.0833) for each surface node across
all 11 participants and constructed a group mask by thresh-
olding the t statistic map at t(10) ≥ 4 ( p= .003, two-tailed,
uncorrected for multiple comparisons). We then used the
SUMA clustering program (SurfClust) to isolate a continu-
ous groupmask, with threshold of t> 4 and a size criterion
of 100 contiguous surface nodes. The ROI in each partici-
pant included the late visual areas (LO and VT), similar to
our previous late visual mask (Connolly, Guntupalli, et al.,
2012). The surface masks were then registered to the brain
volume. Because the mapping from the standard surface
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mesh to individual volumes is idiosyncratic, each partici-
pantʼs volume mask contained a unique number of voxels
with a mean of 2395 ± 88.

Feature Scaling

Often MVP analyses incorporate a voxel selection step,
which involves using some criterion to select the most
informative voxels while discarding noisy ones. Voxel
selection is an important step for reducing noise, which
helps in assessing the true informational content of a data
set. However, this practice has some drawbacks. For ex-
ample, it is necessary when selecting voxels to choose a
threshold criterion, either keeping a set percentage or a
set number of features. Also, different data folds used for
cross-validation will likely select different sets of features,
and selected features in one participant are not guaran-
teed to overlap with selected features in other partici-
pants. These latter facts make it difficult to assess the
topographical consistency of voxels that carry informa-
tion. To avoid the arbitrary nature of threshold setting
and to keep all of the voxels in our analysis, while at
the same time attenuating noise, we chose voxel scaling
as an alternative to voxel selection. For every data fold
used for cross-validation, the training data were used to
compute an F statistic based on a one-way ANOVA, which
is a standard sensitivity measure often used in voxel selec-
tion. Then instead of discarding voxels with an F value
below some criterion, we multiplied each voxel by its
F value (after normalizing the set of F values to make their
sum of squares equal to one). Conceptually, feature scaling

and feature selection are equivalent: Feature selection can
be thought of as a special case of feature scaling where the
weights for voxels below the criterion are set to zero,
whereas the weights for those above are set to one. For
classification, it is important when selecting voxels to base
the selection criterion only on the training data to avoid
overfitting and artificially boosting classification accuracies
(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). This
is also true for voxel scaling, which works the same as voxel
selection for cross-validation purposes. A unique scaling
Fmap is generated for each data fold, and this map is based
only on the training data.

STATIS

STATIS is an extension of PCA used to analyze three-way
data and has been used previously in neuroimaging
(Abdi, Dunlop, & Williams, 2009; OʼToole et al., 2007;
Shinkareva, Ombao, Sutton, Mohanty, & Miller, 2006;
Kherif et al., 2003). STATIS optimally combines data tables
from different sources then performs PCA on the com-
bined data table, which is called the “compromise.” STATIS
provides a low-dimensional characterization of the infor-
mational structure, which entails simply plotting the factor
scores for the observations. The variable (voxel) loadings
describe the contributions of each variable to each princi-
pal component (PC). In addition, bootstrap data resam-
pling provides for the estimation of confidence intervals
for the factor scores of the stimuli. These confidence inter-
vals are indicated in our plots using ellipses around the
factor score centers. STATIS is well-suited for analyzing
fMRI data because the only requirement for combining
individual data tables is that they have the same number
of rows (i.e., observations or stimuli). The columns (alter-
natively: variables, features, voxels) need not correspond
across data tables. This is so because the individual tables
may be combined horizontally—that is, a table with i rows
and j columns is combined with a table with i rows and
k columns to form a table with i rows and j + k columns.
Thus, voxels from different participants may be combined
in the same compromise table without aligning brains to
a standard template. Because STATIS has been thoroughly
written about elsewhere, we refer the reader to Abdi,
Williams, Valentin, and Bennani-Dosse (2012) for a tutorial
and detailed mathematical definitions.

We used STATIS at several stages in our analyses. First,
we used STATIS to optimally combine the seven runs
from each individual participant into a single 12 × n data
table, where 12 is the number of stimulus categories and
n is the size of participantʼs ROI. This is the first step of
STATIS without performing PCA on the compromise
tables. Before computing the participant-specific run-
wise compromise tables, the columns (voxels) of each
participantʼs data set were scaled using the feature scal-
ing method described above and then centered by sub-
tracting the column-wise means from the values in each

Figure 2. Searchlight results. (A) Correspondence between neural
similarity and behavioral judgments was assessed as the correlation
between the behavioral DSM and the neural DSM at each searchlight
location. Mean correlation values were thresholded using a group
t statistic for r > 0, t(10) = 3, p < .02. (B) Twelve-way classification
accuracy was assessed at each searchlight. The mean proportion correct
was thresholded at t(10) = 4.0, p < .001, and this map was clustered
to generate the group ROI mask. CS = collateral sulcus; FG = fusiform
gyrus; OTS = occipito-temporal sulcus.
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column. The rows were centered in a similar manner.
Finally, before generating the compromise, each row
was scaled by its Euclidean norm (square root of sum
of squares). We chose to center and scale the rows in this
manner, because this transformation is involved in calcu-
lating Pearson correlation distance between observations,
which is a standard way to calculate neural DSMs with
fMRI data. Because the voxels across the runs of a given
participant correspond to each other, we computed the
participant-specific compromise as the weighted linear
sum of run-wise data tables (Abdi et al., 2012). We then
computed a group-wise STATIS solution on 11 such
compromise tables. The factor scores and voxel loadings
for this solution are reported in the main text. Because the
group compromise matrix was made up of participant-
specific, horizontally stacked datasets, the PCA of this
matrix yields voxel loadings for each voxel in each par-
ticipant. The factor scores and voxel loadings for this
solution are reported in the main text. To evaluate
the shared functional topography associated with the
voxel loadings across participants, the volumetric results
were mapped to the standard surface mesh grid as de-
scribed above.

Because STATIS provides transformation matrices
from the original high-dimensional space into the lower-
dimensional PC space, it is possible to project new supple-
mental observations into the PC space if those observations
are on the same set of original variables. We exploited this
feature by computing STATIS on subsets of the stimuli (i.e.,
just primates and tools or just the nonprimate animals) and
then mapped the left-out stimuli into the PC space as
supplemental observations (Figure 4). We also exploit this
feature for using STATIS for classification with factor scores
(Figure 5). For each data fold in cross-validation, STATIS is
computed using the training data only, and then the train-
ing and testing data are mapped into the PCA space based
on the training data to avoid “peeking.”

Data and Code

The implementation of STATIS that we used in this article
is available as a part of PyMVPA (www.pymvpa.org). In
addition, we are supplying the data and the Python
code in the form of an IPython notebook (ipython.org/
notebook.html) that we used to run the STATIS and
classification analyses. The purpose of this material is to
allow readers to reproduce the nonstandard analyses
reported in this article and so that readers can explore
first-hand the effects of changing various analysis param-
eters. The data included are anonymous, preprocessed,
and masked to include just the ROI. To make it easier
for readers to run these analyses, the IPython notebook
and data are provided within a modified NeuroDebian
(neuro.debian.net/) virtual machine that has been updated
to include all of the Python dependencies needed to run
the analyses. This material is available for download and
is presently hosted at haxbylab.dartmouth.edu.

RESULTS

Behavioral Ratings of Similarity

We collected behavioral similarity ratings from 40 anony-
mous raters using an online survey. We computed an aver-
age behavioral DSM based on these ratings (Figure 1B).
MDS of this DSM (Figure 1B, right) reveals a sharp distinc-
tion between animate and inanimate categories expressed
by the first dimension. The second dimension captures
variation that suggests an animacy gradient that ranges
from mammals to invertebrates and fish. Thus, the behav-
ioral ratings of the stimuli show both a clear distinction
between animates and inanimates and a continuous ani-
macy gradient within the animate domain.

Searchlight Analyses and ROI Definition

To assess the distribution of category-sensitive brain
regions and also to define an ROI for further analysis,
we began our analyses using whole-brain multivariate
searchlights.
First, we searched for brain regions with neural response

DSMs that resembled the behavioral rating DSM. We used
a representational similarity analysis (Kriegeskorte, Mur, &
Bandettini, 2008) surface-based searchlight (Connolly,
Guntupalli, et al., 2012; Oosterhof et al., 2010, 2011;
Kriegeskorte et al., 2006) to map correlations between
behavioral and neural DSMs. Correlations between the
behavioral and neural DSMs were highest in bilateral
LO and VT cortices (Figure 2A). The behavioral ratings
show two separate dimensions: (1) a strong animate–
inanimate divide and (2) an animacy gradient on the
second dimension. The similarity searchlight showed
reliable but somewhat weak correlations between neural
similarity and behavioral similarity (Figure 3A, r ≤ .3). It
is not possible to know given these correlations which
aspects of behavioral and neural similarity are correlated
with each other. Therefore, it is necessary to further eval-
uate the neural representational structure to assess the
relative contributions of an animacy dichotomy versus an
animacy continuum.
A second searchlight analysis used a 12-way SVM

(Chang & Lin, 2011; Cortes & Vapnik, 1995; SVM) pattern
classifier to map regions with distinguishing information
about our 12 categories. Again bilateral LO and VT, that
is, nearly all of object vision cortex, showed significantly
above chance classification accuracy (Figure 2B). Next,
we defined an ROI for further analysis using the surface
nodes with highest average MVP classification accuracy
across participants. Note that, in both the representa-
tional similarity analysis and SVM searchlight analyses,
surface nodes in early vision along the calcarine sulcus
are visible on the results maps (Figure 2A and B). These
surface nodes were not contiguous with the larger sets of
surface nodes identified throughout LO and VT, and
therefore, these did not cluster with the larger set, leav-
ing only the voxels that can be seen as colored voxels in
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Figure 3. The above-chance 12-way classification in early
visual cortex (Figure 2B) indicates that early vision car-
ried some signal for distinguishing between our catego-
ries; however, the similarity structure in early vision was
only weakly correlated with behavioral structure compared
with later visual regions. Furthermore, our searchlight anal-
ysis using a dichotomous animate versus inanimate and an
animacy continuum model (Figure 7) in a multiple regres-
sion to predict neural similarity shows that neither model
strongly predicted structure in early vision. Because the
focus of the present article was to explore structure in later
vision, we do not report a detailed analysis of structure in
early vision.

Structural Analysis Using STATIS

We used STATIS (Abdi et al., 2012) to analyze the struc-
ture of the category-related neural patterns within this
ROI, which encompassed all of the LO complex and
extended to the posterior intraparietal sulcus. Like PCA,

STATIS computes PCs, each of which has factor scores
(Figure 3A) for the categories and loadings (Figure 3B)
for the voxels in each participant. The reliability of factor
scores was assessed using a bootstrap method to derive
confidence intervals around the factor score centroids—
the ellipses in Figure 1C. The first PC accounts for 55% of
the variance, the second PC accounts for 10%, and the
third PC accounts for ≈7% (Figure 3C). Factor scores
on the first PC (Figures 1C and 3A) show a continuous
gradient of animacy: primates and quadruped mammals
cluster on one end and tools on the other, with fish and
invertebrates closer to tools and birds closer to mam-
mals. We did not observe the sharp contrast between
animate and inanimate categories that was evident in
the behavioral ratings. Rather, the activation patterns
for tools are similar to those for stingrays, ladybugs,
and lobsters, placing the tools near the less animate
end of the animacy gradient, whereas the activation pat-
terns for humans are similar to those for chimpanzees
and cats. These results are robust with respect to whether,

Figure 3. (A) The complete set of factor scores for STATIS analysis in ROI. Error bars show the SEM. Each bar plot is shown on the same scale
for the y axis, which ranges from −0.06 to 0.06. Note that although some lower-order PCs (e.g., #7) show separation between low-animate and
inanimate objects, none of these show a systematic difference. (B) The functional topographies associated with the first two PCs, rendered as
the mean voxel loadings across participants. The voxel loadings were calculated for each voxel in the volumes for each participant and then mapped
to the standard surface mesh grid. The color scales are all the same across PCs, which range from −0.0018 to 0.0018. Like for the factor scores,
the absolute magnitudes of individual loadings are not meaningful because the data were normalized before analysis. Only the relative magnitudes
and the sign carry meaning. (C) Scree plot shows the percentage of variance accounted for by each PC for the STATIS analysis in the ROI.
PC1 and PC2 together account for 65% of the variance. CS = collateral sulcus; FG = fusiform gyrus; OTS = occipito-temporal sulcus; Occ. pole =
occipital pole.
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instead of voxel scaling (see Experimental Methods), we
used voxel selection with 300 and 2000 voxels and when
we used no voxel selection or scaling (results not shown).

To examine the relationship between the dominant
first dimension, which was based on responses to both
animals and tools, and the animacy dimension as defined
solely within animal classes, we used STATIS to define
PCs based on different subsets in our data: (1) PCs on
only primates and tools (Figure 4A) and (2) PCs based
on only animal categories without primates and tools
(Figure 4B). For each solution, we projected the remain-
ing categorical patterns onto the corresponding PC space
and found graded levels of animacy with little change
compared with the first PC defined based on all catego-
ries. These results indicate that neural activity in our ROI
treats both animate and inanimate objects along a single
continuous dimension that reflects the level of animacy,
and the animate–inanimate distinction is one aspect of
this dimension.

The Functional Topography of the
Animacy Continuum

To characterize the functional topography for the ani-
macy dimension, we examined the voxel loadings for
each of our PCs (Figure 3B). For PC1, positive loadings
indicate more activation for highly animate categories,

that is, those categories with positive factor scores on
PC 1, and negative loadings indicate more activation for
less animate or inanimate categories—those that have
negative factor scores on PC1. The functional topography
in bilateral VT resembles previously reported coarse-scale
animate versus inanimate activation topographies in
which the lateral fusiform gyrus responds more to ani-
mate objects and the medial fusiform responds more to
inanimate objects (Connolly, Guntupalli, et al., 2012;
Mahon et al., 2009; Chao et al., 1999). Bilateral superior
LO cortex showed more activation for highly animate
objects, whereas bilateral inferior and posterior LO cor-
tices showed more activation to less animate or inanimate
objects. This topography is very similar to the map of
the first PC based on primates and tools (Figure 4A), as
well as the map defined using just eight animal categories
without primates and tools (Figure 4B). Although the
voxel loading maps convey the relative contributions of
activation gradients to the overall representational space,
the statistical maps show that even lower-order PCs have
some topological consistency across participants (data
not shown beyond PC2). Lower-order PCs, however,
should be interpreted with caution. PCA determines a
set of orthogonal PCs, but it does not follow that the
underlying neural generators—the true latent variables
that shape the representational space—are orthogonal
or even independent of each other. We do not know

Figure 4. (A) MDS showing the factor scores for first two PCs from STATIS calculated using just primates and tools. The remaining stimulus
patterns were then projected into the PC space as supplemental observations (dashed ellipses). (B) MDS from STATIS based on just the nonprimate
animals with primates and tools projected into the space as supplemental observations.
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the true number of underlying neural generators—and
even the first PC may capture variation that is generated
by two or more nonindependent signals. The results of
the PCA indicate that the representational space is high-
dimensional with numerous neural generators that are
multiplexed in the cortex of the ventral vision pathway,
each with a topography that is, at least partially, shared
across participants.

The Animacy Continuum Captures Most of the
between Biological Class Differentiation

To further characterize the contributions of the PCs to
the representation of our stimulus categories, we per-
formed a series of analyses to compare classification per-
formance as a function of the inclusion and exclusion of
each PC. This was done by running classification analysis
using just the factor scores of the PCs. Our stimuli included
one superordinate class of inanimate stimuli (tools) and
five different superordinate biological classes with different
levels of animacy. If the first PC captures animacy informa-
tion, then this PC by itself should be a sufficient basis for
classifying between-class pairings among animal classes
and tools. However, within-class distinctions, such as
warblers versus pelicans, may not be captured well by
the animacy dimension, and classification of these pairings
may depend on other dimensions. To test this hypothesis,
we performed within-subject SVM classification for all
66 unique pairs of categories, and we present the results
for within- and between-superordinate category pairs
separately (Figure 5). Classification using all PCs resulted
in mean classification of 0.87 ± 0.02 (mean ± SEM) for
between-class pairs and 0.77 ± 0.03 for within-class pairs.
Classification based on just the first PC resulted in mean
classification accuracy of 0.79 ± 0.01 for between-class
pairs and 0.61 ± 0.02 for within-class pairs. Classification
of between-class pairs based on all other PCs (0.78 ±
0.02) was equivalent to classification based on the first PC
alone, t(10)= 0.99, ns, whereas classification of within-class
pairs based on all other PCs (0.78 ± 0.03) was significantly
better than classification based on the first PC, t(10) =
5.92, p < .001, and equivalent to classification using
all PCs, t(10) = 1.27, ns. These results show that the first
PC contains mostly information about between-class
distinctions—whereas information about finer distinctions
within classes is more distributed across PCs. For example,
the distinction between pelicans and warblers was not
evident on the first PC (Figures 1C and 3A) but was seen
in the second, third, fifth, and sixth PCs (Figure 3A). Simi-
larly, the distinction between humans and chimpanzees
was evident in only the fourth, sixth, tenth, and eleventh
PCs (Figure 3A). In addition, some between-class distinctions
are carried on lower-order PCs: The fourth PC provides
between-class distinction for birds versus invertebrates,
although not carrying much distinguishing information
for within-class pairs for either birds or invertebrates.

Information Content on the High and Low Ends of
the Animacy Continuum Topography

To examine whether the discriminating information
about “high animacy” stimuli was localized in cortex with
positive values on the animacy continuum dimension and
information about “low animacy” stimuli is localized to
cortex with negative values on the animacy continuum,
we subsampled our ROI into the voxels that loaded the
most positively and the most negatively on the first PC,
keeping 300 voxels for each partition. We then tested
pairwise classification for high animacy categories (humans
vs. chimpanzees) and inanimate categories (hammers vs.
keys) in each division. To evaluate the outcome of the
classification accuracies, we used a two-way ANOVA with
voxel loading as one independent variable with two levels
(positive vs. negative loadings), animacy of the stimuli as
the second independent variable also with two levels (pri-
mates vs. tools), and with participants as the random vari-
able. Main effects were not observed for voxel loading
(mean proportions correct: positive = 0.70 ± 0.15; nega-
tive = 0.66 ± 0.16; F(1/10) = 0.99, ns) nor for animacy (pri-
mates = 0.69 ± 0.16; tools = 0.67 ± 0.16; F(1/10) = 0.24,
ns), and there was no interaction (pos-primates = 0.72 ±
0.15; pos-tools = 0.69 ± 0.17; neg-primates = 0.66 ± 0.17;
neg-tools = 0.66 ± 0.17; F(1/10) = 0.14, ns). Classification
accuracies for 12-way SVM classification were equivalent
across all categories with one exception: Accuracies for
cats were higher in positive voxels than in negative voxels,
but these results did not represent any general trend
(Figure 6).

These results indicate that information that discrimi-
nates among high animacy categories is not found pre-
dominantly in the cortex that responds most strongly

Figure 5. The contributions of PC1 versus all other PCs for within- and
between-class pairwise distinctions measured using SVM pattern
classifiers. Error bars show 95% confidence intervals.
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to those stimuli and, similarly, information that discrimi-
nates low animacy and inanimate stimuli is not found pre-
dominantly in the cortex that responds most strongly to
those stimuli. Rather the information about high-
animacy, low-animacy, and inanimate categories is distrib-
uted across the ventral vision pathway that contains the
animacy continuum.

No Evidence for a Sharp Animate–Inanimate
Distinction in Cortex

The dichotomous distinction between animate and in-
animate objects is psychologically salient and prominent
in the similarity space defined by behavioral judgments
(Figure 1B). By contrast, the similarity structure defined
by neural signal in the ventral vision pathway is dominated
by the animacy continuum with overlap between the low-
est animacy species and inanimate tools. To test whether
the dichotomous distinction between animate and in-
animate objects may be represented in some other brain
region, we built two model-based DSMs: (1) a dichoto-
mous model in which minimal distance is posited within
living and nonliving categories and maximum distance
between these two categories and (2) a continuummodel
that posits minimal dissimilarity between objects at the
same animacy level (primates, mammals, birds, etc.) and
increasing dissimilarity further along the animacy continuum
(Figure 7A). We then used these models as predictors of

neural DSMs in a multivariate linear least-squares regres-
sion searchlight analysis.
The results of this analysis revealed a good fit between

the model and neural activity throughout bilateral LO
cortex. The model accounted for 51% of the variance in
searchlight DSM centered on the peak voxel in the middle
of the right fusiform. Comparison of the β coefficients for
the two model DSMs show that the fit of the model
throughout LO cortex is attributable to the high cor-
relation between the continuum model and neural repre-
sentational structure in this region. β values for the
dichotomous model were only higher in early visual cor-
tex. No region outside of early visual cortex showed any
evidence for representing the dichotomous distinction
between animate and inanimate objects. Moreover, the
dichotomous model was not a good fit for the neural
structure in early vision, as it accounted for only a small
percentage of the variance. Furthermore, structural anal-
ysis using STATIS in early visual cortex revealed over-
lapping representations for living and nonliving objects
(results not shown). Thus, the neural basis for the psycho-
logically predominant, dichotomous animate–inanimate
distinction (first dimension in Figure 1B) was not revealed
in our experimental data.

DISCUSSION

The results of this study suggest that the view of ventral
vision pathway as encoding a dichotomous living–nonliving
distinction is incorrect; furthermore, a graded dimension
of animacy describes a major part of the representational
space in the human ventral vision pathway. Represen-
tations of inanimate objects share the same location on

Figure 6. Proportion of times each stimulus was classified correctly in
12-way SVM classification using all voxels, only voxels that loaded
positively on the first PC, and only voxels that loaded negatively on
the first PC. The error bars show 95% confidence intervals based on the
SEM across participants.

Figure 7. Multiple regression searchlight using model DSMs shows
no evidence for a sharp animate–inanimate distinction. Model DSMs
(top) for the animacy continuum model and the dichotomous living
versus nonliving model (stimuli arranged as in Figure 1) were used as
regressors in multiple regression to predict neural similarity at each
searchlight. The map shows the difference in beta-weights for the
continuum model minus the dichotomous model. The map is
thresholded using the R2 fit for the regression model with R2 > .2.
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this dimension as animals with “low animacy,” such as
invertebrates and fish. The animacy continuum is carried
by the same topography that has been associated with
animate–inanimate domain specificity. We propose that
the representation of the animate–inanimate distinction in
the ventral vision pathway is better understood as one facet
of an animacy continuum. Our previous results showed
that a continuous dimension from “least animate” to “most
animate” captured most of the variance in neural represen-
tation among biological classes (Connolly, Guntupalli,
et al., 2012). The current study shows that bona fide in-
animate categories are represented along this continuum
in a manner similar to animals with low animacy, a pattern
that blurs the distinction between the animate and inani-
mate domains in neural representational space.
The similarity structure for neural responses in the

ventral vision pathway differed significantly from the sim-
ilarity structure based on behavioral ratings. In particular,
the dominant dimension in the neural representational
space is for the animacy continuum, and the representa-
tion of tools is embedded in that continuum on the low
animacy end. By contrast, the primary distinction in the
behavioral ratings was between all living animals and the
inanimate tools (first dimension; Figure 1A), with equiv-
alent values for animals, except humans, suggesting in-
variance across stimuli depicting different species. The
second dimension reflected a continuum of the living
animals with an ordering that closely matched the ani-
macy continuum in the neural representational space.
The distinction between humans and other animals, espe-
cially chimpanzees, was not evident on the animacy con-
tinuum but was only seen on lower-order PCs. These
discrepancies between behavioral and neural representa-
tional spaces suggest that the categorical distinction be-
tween all living, animate entities and nonliving entities
in the ventral vision pathway is actually just one facet of
a more general organization principle.
The neural representation of an animacy continuummay

be shared with other primates. The between-category cor-
relations for population responses in monkey IT cortex
(Kiani et al., 2007) show that insects and butterflies are
more highly correlated with fish and reptiles than with
the categories of mammalian species, with birds in an inter-
mediate position. The data in Kiani et al. (2007), however,
appear to show a larger distinction between their inani-
mate and low animacy categories (their Figure 10) than
we find in human VT cortex.
The contrast between responses to primates and tools

replicates the topography for the distinction between
animate and inanimate stimuli seen in many previous
studies. We show, however, that the animacy continuum,
which involves no nonliving stimuli, has essentially the
same topography (Figure 4B) and that the responses to
“low animacy” animals are very similar to the responses
to tools (Figure 1C). This topography, therefore, does
not reflect the binary animate–inanimate distinction with
invariance across living animals but, rather, reflects a con-

tinuum in which the inanimate stimuli are embedded
among low animacy animals.

Information about high animacy stimuli is not limited
to areas that have positive values on this dimension, and
likewise, information about low animacy stimuli is not
limited to areas with negative values on the animacy con-
tinuum. Rather, in general, the distinctions among high
animacy stimuli are as strong in the cortex with weak re-
sponses to these stimuli as in the cortex with strong re-
sponses and likewise for distinctions among low animacy
animals and inanimates—consistent with previous reports
by us and others (Huth, Nishimoto, Vu, & Gallant, 2012;
Brants, Baeck, Wagemans, & Op de Beeck, 2011; Haxby
et al., 2001, 2011; Op deBeeck, Brants, Baeck, &Wagemans,
2010). Thus, both high and low animacy categories are
represented in patterns of brain activity in both lateral and
medial VT cortex.

The topographies of PCs (Figure 3B) are pattern basis
functions that capture the differential patterns of re-
sponse that carry stimulus distinctions. For example,
although the animacy continuum does not capture the
distinction between responses to warblers and pelicans,
adding in the second and third PCs does capture the dif-
ferential topographies for these responses. In general, the
first PC—that is, the animacy continuum—captures coarser
distinctions among animal classes, whereas the information
about finer within-class distinctions is more distributed
across PCs. The patterns that capture a distinction between
two categories are not restricted to the cortex that has
positive values for those categories on the dominant ani-
macy continuum topography, indicating that information
about animal species and objects is broadly distributed.

The blurring between tools and low animacy animals is
further corroborated by studies of clearly inanimate ob-
jects that behave in ways that resemble the behavior of
animate entities. Animations of simple geometric shapes
that move in ways to suggest social interactions consis-
tently evoke strong activity in the lateral parts of VT cor-
tex (Gobbini, Koralek, Bryan, Montgomery, & Haxby,
2007; Beauchamp, Lee, Haxby, & Martin, 2003; Schultz
et al., 2003; Castelli, Frith, Happé, & Frith, 2002). Robots
that have features of human faces but are clearly mechan-
ical and thus are never mistaken for living faces evoke
strong activity in lateral fusiform cortex when they make
recognizable facial expressions (Gobbini et al., 2011).
Industrial robots that have minimal structural similarity
to animals evoke stronger activity in the right fusiform
cortex when they perform goal-directed actions, as com-
pared with non-goal-directed actions (Shultz & McCarthy,
2012). Gobbini et al. (2011) proposed that the occipital
face area, fusiform face area, and face-responsive poste-
rior STS “participate in the representation of agentic
forms and actions but do not distinguish between animate
and inanimate agents” (p. 1915). Together these studies
show that the responses to inanimate agents in the ventral
vision pathway are on the higher animacy side of the ani-
macy continuum. The common denominator seems to be
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the performance or potential to perform self-initiated,
complex, goal-directed actions. The word anima means
soul in Latin. Clearly, robots do not have souls, but they
can perform actions that are the result of complex internal
states that must be inferred. Thus, the animacy contin-
uum appears to be related to the perception of things,
be they animate or mechanical, that involves inference
of internal states of varying levels of complexity. Percep-
tion of these internal states affords prediction of behavior
and can condition how we interact with these things.
Representation of level of animacy, as broadly defined
here, thus is a necessary precondition for recruitment of
the appropriate cognitive resources for understanding
and interacting effectively with animals and objects.

Where Does the Animacy Continuum Come from?

Previous theories of the animate–inanimate distinction
were premised on observations of a dichotomous distinc-
tion. The strong form of the domain specificity hypothesis
proposed that evolution provided for discrete modules
for processing conspecifics, animals, and tools. Our obser-
vations that the “least animate” animals evoke activity
similar to tools and that the “most animate” animals evoke
activity similar to conspecifics challenge the notion of
discrete modules. However, the idea that evolution
played a role in determining neural organization of cate-
gories is consistentwith the animacy continuumhypothesis:
It can be argued that the abstract property of animacy has
ecological and evolutionary significance. Alternatively, the
strong form of the SFH proposed that visual features were
more important for identifying animals and that functional
motor features were more important for tools. Our obser-
vation that the “least animate” animals share representa-
tional space with tools challenges this strong version of
SFH. There are no obvious functional motor properties rel-
evant to spiders, ladybugs, and stingrays that can explain
their similarity to tools. It is also not obvious why visual
properties are less important for recognizing a ladybug
compared with a chimpanzee.

We interpret the animacy continuum as corresponding
to an abstract psychological dimension of perceived ani-
macy that is measurable in human behavioral experi-
ments, such as that reported in Figure 1B where the
animacy continuum is reflected on the second dimension
of the MDS space. Evidence of animacy as a graded psy-
chological dimension is found in the writings of Aristotle, in
linguistics, and in folk taxonomies. The notion of graded
animacy has ecological validity: It is a fact about the world
that animals vary with respect to intelligence, agency, and
the degree to which animals share characteristics with the
animate prototype—humans. Leading theories of brain
evolution propose that the large size and computational
power of the human brain arose from the pressures of
living in large complex social groups (Dunbar, 1998). The
animacy continuum hypothesis is consistent with this view
in that understanding the actions and intentions of other

sentient beings is a central component. By extension, the
similarity of brain activity for perceiving animals and per-
ceiving humans will be proportional to the degree to which
the animals display agentic properties.
In conclusion, we address a likely objection to our inter-

pretation of the results: that animacy makes a poor candi-
date for an organizing principle of neural representation
because it is not a simple, primary, or basic property. In
the tradition of David Hume and John Locke, the modern
empiricist notion of “nothing in the brain not first in the
senses” pervades the cognitive sciences (Machery, 2006).
Neoempiricists will likely judge animacy as too abstract to
play a central role in representation. We disagree. As a
perceptual act, perceiving the property of animacy is nec-
essarily tied to sensory input, but we find that accounts for
animacy in terms of sensory properties are convoluted
and not parsimonious. No simple sensory feature, such
as color, texture, or motion energy, has a clear relationship
to the animacy continuum. More complex features—the
presence of faces and bodies; gaze, expression, and other
intentional movements; complex vocalizations—are
related to the continuum, but no single feature is invari-
ably present or necessary by itself to perceive level of
animacy or agency. The level of animacy can be perceived
based on action without form (Gobbini et al., 2007;
Castelli et al., 2002) and on form without action (still
images), and both are associated with the lateral-to-
medial gradient for animacy in the ventral pathway.
The congenitally blind can perceive agents and show a
normal lateral-to-medial gradient for animacy in the ven-
tral pathway despite the lack of visual sensory input or
experience (Mahon et al., 2009). The common denomi-
nator, therefore, is more the abstract property of ani-
macy or agency than a simple correlation with sensory
features.
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