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Judgments of trustworthiness from faces determine basic approach/avoidance responses and approximate the valence
evaluation of faces that runs across multiple person judgments. Here, based on trustworthiness judgments and using a computer
model for face representation, we built a model for representing face trustworthiness (study 1). Using this model, we generated
novel faces with an increased range of trustworthiness and used these faces as stimuli in a functional Magnetic Resonance
Imaging study (study 2). Although participants did not engage in explicit evaluation of the faces, the amygdala response changed
as a function of face trustworthiness. An area in the right amygdala showed a negative linear response�as the untrustworthiness
of faces increased so did the amygdala response. Areas in the left and right putamen, the latter area extended into the anterior
insula, showed a similar negative linear response. The response in the left amygdala was quadratic�strongest for faces on both
extremes of the trustworthiness dimension. The medial prefrontal cortex and precuneus also showed a quadratic response, but
their response was strongest to faces in the middle range of the trustworthiness dimension.
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People evaluate faces on multiple trait dimensions (Uleman

et al., 2005) and these evaluations predict important social

outcomes ranging from electoral success (Todorov et al.,

2005; Ballew and Todorov, 2007; Little et al., 2007) to

sentencing decisions (Blair et al., 2004; Eberhardt et al.,

2006). As little as 100ms exposure to a face is sufficient for

people to make a variety of person judgments such as

trustworthiness, competence and aggressiveness (Willis and

Todorov, 2006). In fact, the minimal time exposure after

which people start discriminating between different cate-

gories of faces may be as little as 33–38ms (Bar et al., 2006;

Todorov et al., under review).

Although people make multiple person judgments from

faces, these judgments are highly correlated with each other,

reflecting the valence evaluation that underlies person

judgments (Rosenberg et al., 1968; Kim and Rosenberg,

1980). Oosterhof and Todorov (under review) showed that

judgments of trustworthiness approximate this valence

evaluation. In a series of studies, they elicited spontaneous

person descriptions of faces and then identified the most

frequent trait dimensions used to describe faces. Judgments

on these traits were submitted to a principal components

analysis. All positive trait judgments had positive loadings

and all negative trait judgments had negative loading on the

first principal component, which accounted for more than

60% of the variance of these judgments. Out of 13 different

trait judgments, judgments of trustworthiness showed the

highest correlation with this component. This correlation

was practically unchanged when the principal component

was obtained from all other trait judgments except trust-

worthiness. The correlation between trustworthiness judg-

ments and this component�a linear combination of 12 other

trait judgments�was 0.94, indicating that these judgments

approximate the valence evaluation underlying multiple

social judgments from faces.

This finding is consistent with prior findings about the

involvement of the amygdala in the evaluation of faces on

trustworthiness. Adolphs et al. (1998) showed that patients

with bilateral amygdala damage were impaired in discrimi-

nating untrustworthy- from trustworthy-looking faces.

Two subsequent functional neuroimaging studies confirmed

the involvement of the amygdala in face evaluation on

trustworthiness. Winston et al. (2002) showed that the

amygdala response to faces increased as their perceived

untrustworthiness increased. This was the case for both

explicit and implicit (age judgments) evaluation of trust-

worthiness. Engell et al. (2007) used an implicit task and

replicated the Winston et al. findings.

Whereas the perceived trustworthiness of faces in Winston

et al. (2002) was assessed by subjective judgments of

trustworthiness collected after the fMRI study, Engell et al.

(2007) used consensus judgments of trustworthiness (aver-

aged across raters) obtained by an independent sample of

participants. The amygdala response was better predicted

by the consensus judgments of trustworthiness than by the

participants’ own judgments of trustworthiness (collected

after the imaging experiment as in Winston et al.’ s study).

Because consensus judgments reflect properties of the
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face rather than idiosyncratic perceptions of the judge

(Hönekopp, 2006), Engell et al. argued that the amygdala

response is driven by structural properties of the face that

convey cues for untrustworthiness.

Engell et al. used statistical procedures to disentangle the

contributions of idiosyncratic perceptions and consensus

judgments to the amygdala’s response to face trustworthi-

ness. Following on this exploratory analysis, the first objec-

tive of this article was to develop a model-based validation

approach for testing the role of the amygdala in the evalua-

tion of face trustworthiness. First, we determined what facial

features are important for judgments of trustworthiness

across participants. Second, we built a 3-dimensional (3D)

computer model for representing face trustworthiness based

on these features. Third, using this model, we generated

trustworthy- and untrustworthy-looking faces (Figure 1).

Finally, using functional Magnetic Resonance Imaging (fMRI),

we measured how neural activation changes as a function of

the trustworthiness of these model-generated faces.

The second objective of the article was to test not only

for linear but also for non-linear effects of face trustworthi-

ness on the amygdala response. Specifically, following the

computer modeling work of Oosterhof and Todorov (under

review) and the findings of Said et al. (in press), both

described subsequently, we expected that the amygdala

might show increased response to faces on both extremes of

the trustworthiness dimension.

In research conducted subsequently to study 1, using a data-

driven statistical model for face representation, Oosterhof and

Todorov built a model for representing face trustworthiness.

They argued that face evaluation of emotionally neutral faces is

an overgeneralization of functionally adaptive systems for

detection of the emotional states of others (Knutson, 1996;

Montepare and Dobish, 2003). Specifically, judgments of

trustworthiness reflect detection of subtle facial features that

resemble emotional expressions signaling approach/avoidance

behavior (Todorov, in press). Consistent with this argument,

exaggerating the facial features in the negative direction of the

trustworthiness dimension produced faces expressing anger,

whereas exaggerating the facial features in the positive

direction of the dimension produced faces expressing happi-

ness. These expressions signal to the perceiver whether they

should avoid or approach the person displaying the emotion

(cf., Fridlund, 1994).

Given that several functional neuroimaging studies have

found increased amygdala response to happy than to neutral

faces (Breiter et al., 1996; Yang et al., 2002; Winston et al.,

2003; Pessoa et al., 2006), Oosterhof and Todorov’s findings

suggest that trustworthy faces can evoke a stronger amygdala

response than faces in the middle of the trustworthiness

dimension. Said et al. (in press) provided a confirmation of

this prediction. They modeled both linear and quadratic

components of the amygdala response to face trustworthi-

ness and found that the quadratic components provided a

better fit of the amygdala response than the linear

components. The amygdala response was stronger to both

trustworthy and untrustworthy faces than to faces in the

middle of the trustworthiness dimension. However, con-

sistent with the previous findings of linear amygdala

response to trustworthiness (Winston et al., 2002; Engell

et al., 2007), the amygdala response was more sensitive to

differences at the negative than at the positive end of the

trustworthiness dimension. We sought to replicate this

finding with the model-generated faces.

STUDY 1: CREATING A MODEL OF FACE
TRUSTWORTHINESS
The objectives of the first study were to: (i) empirically

determine the facial features important for judgments of

trustworthiness and (ii) build a parsimonious model for

manipulating face trustworthiness based on these features.

Using a data-driven statistical model of face representation

(Blanz and Vetter, 1999; Singular Inversions, 2006), we

generated faces with neutral expressions and asked partici-

pants to rate these faces on trustworthiness. Then, we

regressed the mean trustworthiness judgments on the model

values of the four facial features showing the highest

correlation with these judgments. Consequently, the regres-

sion coefficients estimated from this analysis were used to

build a regression model for predicting the trustworthiness

of novel faces. We used this model to manipulate the

trustworthiness of the faces used in the fMRI study.

Methods
Participants. Twenty-one undergraduate students partici-

pated in the behavioral study for partial course credit.

Statistical model of face representation. We used the

Facegen Modeller program (http://facegen.com) version 3.1

(Singular Inversions, 2006). Facegen creates 3D faces whose

shape and texture can be adjusted on multiple dimensions.

The face model of Facegen is based on a database of male

trustworthyuntrustworthy 0

Fig. 1 Examples of faces used in the fMRI experiment. Each of the three rows shows
the untrustworthy (on the left) and trustworthy (on the right) versions of a face. Their
position on the trustworthiness axis indicates the trustworthiness predicted by the
regression model (see text for details).
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and female human faces that were laser-scanned in 3D.

Using Principal Component Analysis (PCA), a model was

constructed so that each face can be represented by a limited

number of independent components. The components

do not correspond to specific facial attributes or features.

However, feature controls, which are a linear transformation

of the components, resolve this issue. For example, different

controls allow for changing the nose (e.g. flat/pointed) and

the eyebrows (e.g. down/up inner brow ridge). In contrast

to the principal components, which are uncorrelated,

the features are correlated and, thus, changing one control

value changes other values. For this study, we worked with

the 61 symmetric shape (features) controls of Facegen

that together give complete control over the underlying

components.

Face stimuli. First, we generated 96 Caucasian faces

using Facegen. The faces were generated randomly with the

following constraints. Facegen’s race controls were set so that

all faces were European. This was done because a completely

random face can be of any race (including Afro-American

and Asian) and we wanted to avoid judgments affected

by ethnic stereotypes. Additionally, facial attractiveness was

increased to make them more similar to the photo-fitted real

faces used in Engell et al. (2007). Also, we introduced a bias

towards male faces, because male faces without hair look

more natural than female faces without hair. This bias

resulted in mostly typical male faces, with some feminine

and some extremely masculine faces. By default, the

randomly generated faces are emotionally neutral. Facegen

has separate controls for adding the basic emotional expres-

sions: anger, disgust, fear, sadness, happiness and surprise.

For all of the randomly generated faces, these expressions

were set to neutral. Nevertheless, to further ensure that

the expressions were neutral, we also set the mouth shape

control, which moves the corners of the mouth up and

down, to neutral.

Second, we generated another set of 96 faces derived from

the first set of 96 faces by manipulating the eyebrows

(lowering or raising the inner brow ridge) and the mouth

(the distance between the mouth and the nose) features of

each face. This was done because a pilot study determined

that these two features are important for judgments of

trustworthiness. Thus, for each of the first set of 96 randomly

created faces, another face was created by adjusting either the

brow ridge inner up/down control (�2 s.d.), or the mouth

up/down control (�2 s.d.), or both.

Procedures. Participants were told that we were inter-

ested in first impressions and that there is no right or wrong

answer. Each of the 192 faces was presented once and the

order of faces was randomized for each participant. Each face

was presented at the center of the screen for 500ms and was

preceded by a 1000ms fixation cross. The inter-stimulus

interval (ISI) was 1000ms. The response scale ranged from

1 (Very untrustworthy) to 8 (Very trustworthy). The mean

judgments averaged across participants were used to find

the facial features most predictive for trustworthiness

judgments.

Results
The trustworthiness judgments were sufficiently reliable,

Cronbach’s a¼ 0.80. At the first stage of the analysis, we

computed the correlations between the mean trustworthi-

ness judgments and each of the 61 feature shape controls.

We selected the four facial features that showed the highest

correlation with trustworthiness judgments in different face

regions (Table 1). Faces with high inner eyebrows, pro-

nounced cheekbones, wide chins and shallow nose sellion

looked more trustworthy than faces with low inner eye-

brows, shallow cheekbones, thin chins and deep nose sellion.

We also selected these features because they showed

relatively weak correlations with each other, max (|r|)¼ 0.24.

At the second stage of the analysis, we regressed the mean

trustworthiness judgments on the four facial features. This

regression analysis was based on the mean judgments of the

unambiguously male faces, as judged by three independent

raters, because we used only male faces in the fMRI study.

The four facial features accounted for 29.4% of the variance

of trustworthiness judgments. The coefficients of the regres-

sion model (Table 1) were used to predict the trustworthi-

ness of a new set of faces used in the fMRI study.

It should be noted that these predicted trustworthiness

values were robust with respect to which faces were used in

the regression analysis. A post hoc correlation analysis

showed that the predicted trustworthiness values were very

similar if either all faces (male and female) were used to

estimate the regression coefficients (r¼ 0.99), or if only male

faces from the original and unmanipulated face set were

used (r¼ 0.99).

STUDY 2: NEURAL RESPONSES TO FACE
TRUSTWORTHINESS
In this experiment, we used the same implicit task as in

Engell et al. (2007). Participants ostensibly participated in

a face memory task. They were presented with blocks of

faces and asked to indicate whether a test face was presented

in the block. Thus, the task did not demand explicit person

evaluation. We tested for both linear and quadratic effects

as a function of face trustworthiness.

Table 1 Zero-order correlations between changes in facial features and
judgments of face trustworthiness, and regressions coefficients of changes in
facial features as predictors of face trustworthiness

Facial feature Correlation Regression coefficient

Brow ridge (down/up) 0.30� 0.13�

Cheekbones (shallow/pronounced) 0.24� 0.13�

Chin (wide/thin) �0.26� �0.21�

Nose sellion (shallow/deep) �0.38� �0.09

�P< 0.05
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Methods
Subjects. Fourteen (seven female) subjects different from

the subjects in the behavioral study volunteered for the fMRI

study and were paid $30 for their participation. They were

between the ages of 18 and 27 (mean¼ 22.6). All subjects

were right-handed, had normal or corrected-to-normal

vision and reported no history of neurological illnesses or

abnormalities. We acquired informed consent for participa-

tion approved by the Institutional Review Board for Human

Subjects at Princeton University. All subjects were fully

debriefed at the completion of the experiment.

Face stimuli. Ninety new faces were created randomly

using the same procedure as the one described in the

‘Method’ section of study 1. Thirty-three non-ambiguous

male faces were selected based on the sex judgments of three

independent raters. To increase the variance of face trust-

worthiness, we used these 33 faces as a basis of 66 new faces:

33 trustworthy and 33 untrustworthy faces (see Figure 1 for

examples). For the trustworthy faces, the shape controls with

positive coefficient weights (brow ridge and cheekbones)

were increased with about 2 s.d. and those with negative

coefficient weights (chin and nose sellion) were decreased

with about 2 s.d. (because the shape controls are correlated,

we were unable to manipulate them with exactly 2 s.d.). For

the untrustworthy faces, the shape controls for each feature

were changed the same distance but in the opposite direc-

tion. To obtain a continuous measure of trustworthiness,

we computed the predicted trustworthiness value for each of

the 66 faces using the regression model obtained in study 1

(Table 1). These values were centered around zero and used

to create the regressors for the fMRI analysis as explained

subsequently.

As noted in the introduction, in research conducted

after study 1, we have formally modeled a trustworthiness

dimension in the 50-dimensional space defined by the

50 symmetric shape components in Facegen (Oosterhof and

Todorov, under review). The predicted values from the

regression model for the faces used in the fMRI study and

the predicted values from the comprehensive trustworthiness

model were practically indistinguishable. The correlation was

0.99. Thus, the parsimonious regression model provided

a robust representation of the trustworthiness of faces.

This high correlation is due to the fact that we expanded the

range of trustworthiness by manipulating the facial features

important for judgments of trustworthiness and that the

feature controls are correlated. That is, changes in the four

features manipulated in the current study are linked to

changes on a number of other features. In other words,

changes in the four features are linked to all 50 underlying

principle (shape) components.

Procedures. Subjects were informed that they were

participating in a study examining face memory. They

were told that they would see six blocks of face images.

A block consisted of 11 face images presented in random

order. The acquisition run began with a 12 s presentation

of a fixation cross. Subsequently, each face stimulus was

presented for 1 s in a jittered event-related design. The ISI

was chosen randomly from an exponential distribution with

a target mean ISI of 3.5 s. The minimum ISI was 1.5 s.

Subjects were told to ‘do their best’ to remember the first

11 face images and that the 12th image would be a ‘test’

image. They were instructed to indicate whether they

remembered the ‘test’ image from the preceding 11 face

images by pressing either a ‘yes’ or a ‘no’ button. Each block

was separated by a 12-s rest period to allow hemodynamic

activation to return to baseline. The order of the face images

was randomized for each subject. Stimuli were projected

onto a screen located at the rear of the bore of the magnet.

Subjects were able to view these stimuli via an angled mirror

attached to the RF coil placed above their eyes.

After the scanning session, subjects were led to a computer

and asked to judge the 66 faces used in the fMRI session on

trustworthiness. The order of the faces was randomized for

each subject. Each face was presented at the center of the

screen until the subject responded. The response scale ranged

from 1 (Very untrustworthy) to 9 (Very trustworthy).

We were unable to obtain judgments for one subject because

he needed to leave immediately after the scanning session.

Image acquisition. Blood oxygenation level-dependent

(BOLD) signal was used as a measure of neural activation.

Echo planar images (EPI) were acquired using a Siemens 3.0

Tesla Allegra head-dedicated scanner (Siemens, Erlangen,

Germany) with a standard ‘bird-cage’ head coil

(TR¼ 2000ms, TE¼ 30ms, flip angle¼ 808, matrix

size¼ 64� 64). By using 33 interleaved 3-mm axial slices

we were able to achieve near whole brain coverage. Prior to

the primary data acquisition scan, a high resolution anat-

omical image (T1-MPRAGE, TR¼ 2500ms, TE¼ 4.3ms,

flip angle¼ 88, matrix size¼ 256� 256) was acquired for use

in registering functional activity to the subject’s anatomy and

for spatially normalizing data across subjects.

Image analysis. All fMRI data were analyzed with

Analysis of Functional Neuro-images software (AFNI; Cox,

1996). Subjects’ motion was corrected using a six-parameter

3D motion-correction algorithm following slice scan-

time correction. Data were then low-passed filtered with

a frequency cut-off of 0.1Hz following spatial smoothing

with a 6mm full width at half minimum (FWHM) Gaussian

kernel. The signal was then normalized to percent signal

change from the mean.

To test for linear and quadratic effects of face trustworthi-

ness on neural responses, we used a polynomial regression

(Buchel et al., 1998). We created three time series of interest:

a zero-order time series indicating the presence of a face,

a first-order time series testing for linear effects of trust-

worthiness and a second-order time series testing for

quadratic effects of trustworthiness. Both the first-order

and second-order time series were centered around zero and

orthogonalized to each other. The three time series were then

convolved with an ideal hemodynamic response function
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and entered into the General Linear Model (GLM). The

model also included regressors of non-interest: time series

representing subject head movement, time-dependent linear

and quadratic trends caused by scanner drift and the

presentation of the ‘test’ images.

A t-test was performed on the parameter estimates

supplied by the GLM for each subject to test for the signif-

icance of linear and quadratic estimates across all subjects.

We generated group level statistical parametric maps

showing voxels that varied linearly with face trustworthiness

and voxels that varied quadratically with face trustworthi-

ness. The maps were then thresholded at an uncorrected

voxelwise a-level of 0.001. To find out the minimum cluster

size for corrected significance of P< 0.05, we conducted a

whole brain Monte Carlo simulation of null-hypothesis data.

These simulations determined that the minimum cluster size

was 378mm3.

Because we made a priori predictions about the amygdala,

we thresholded the statistical maps in each amygdala at

an uncorrected voxelwise a-level of 0.05 and then conducted

a Monte Carlo simulation in each amygdala. This simula-

tion indicated that a minimum cluster size of 135mm3 was

required to achieve corrected significance of P< 0.05.

Because this experiment used the same design as the fMRI

experiment conducted by Engell et al. (2007), we also

conducted a conjunction analysis of the statistical maps of

the two experiments after we submitted the Engell et al. data

to the same GLM analysis. For the conjunction analysis,

the maps were thresholded at an a-level of 0.05 and, thus,

the resulting conjoint probability was 0.0025. A Monte Carlo

simulation in each amygdala determined that the minimum

cluster size was 54mm3 for corrected significance of P< 0.05.

To independently validate the shape of the neural

response as a function of face trustworthiness, we defined

regions of interests (ROI) and then conducted an additional

GLM analysis to extract the signal change for each face. For

the amygdala, the ROI were defined by the intersection of

the statistical parametric maps with an anatomical mask

of the amygdala. We also created functional masks for those

regions outside the amygdala that met the criterion for

corrected statistical significance.

In the additional analysis, for every subject, regressors for

each face image were convolved with an ideal hemodynamic

response function and entered into the GLM. The model also

included regressors of non-interest: time series representing

subject head movement, time-dependent linear and quad-

ratic trends caused by scanner drift and the presentation of

the ‘test’ images. These GLMs provided the parameter esti-

mates for each face presented to every subject. It should be

noted that this analysis does not make any assumptions

about the shape of the response as a function of face

trustworthiness.

Within each ROI, we pulled the mean percent signal

change for each face. Because each face was presented only

once, we binned the faces into six categories of 11 faces each,

ranging from the 11 least trustworthy faces to the 11 most

trustworthy faces. The mean signal change across subjects

was plotted as a function of these categories in the ROI

(Figures 2D, E, 3B and C).

Results
Behavioral judgments. The trustworthiness judgments of

the faces collected after the imaging session agreed with the

trustworthiness predicted by the model. The correlation

between the latter and the mean behavioral judgments was

0.65, P< 0.001. Correlation analysis at the level of individual

subjects showed that for all subjects but one, the correlation

between their judgments and the model trustworthiness

was positive. The average correlation 0.35 (s.e.¼ 0.06) was

significantly higher than zero, t (12)¼ 5.09, P< 0.001.

FMRI results. Replicating Engell et al. (2007) findings,

a cluster of voxels in the right amygdala showed a significant

negative linear trend as a function of face trustworthiness

(Figure 2B). The amygdala response to faces increased as the

untrustworthiness of faces increased (Figure 2D). A conjunc-

tion analysis with the statistical map for the linear trend in

Engell et al. showed that this cluster was largely overlapping

with the cluster showing a negative linear response to the

trustworthiness of the real faces used by Engell et al. (103 out

of 110mm3). There was a small cluster of voxels in the left

amygdala (31mm3) showing the same negative linear trend,

but this cluster did not pass the significance criterion

adjusted for multiple comparisons.

The only other region besides the amygdala that showed

a significant linear response to face trustworthiness and

passed the statistical threshold corrected for multiple

comparisons was the left putamen (Table 2). Similarly, to

the response of the right amygdala, the putamen’s response

increased as the face untrustworthiness increased. At a

reduced threshold of 0.01, a large cluster (1506mm3) in the

right putamen that extended into the right anterior insula

also showed a negative linear response (P< 0.05 corrected for

multiple comparisons).

The analysis of the quadratic trend showed a significant

positive response in a cluster of voxels in the left amygdala

(Table 2 and Figure 2C). As shown in Figure 2E, the

amygdala response was strongest to both untrustworthy and

trustworthy faces, although the response was more elevated

for untrustworthy faces. However, the coefficient for the

negative linear trend was not significant. This finding

replicates the findings of Said et al. (in press) who found a

similar quadratic response function to face trustworthiness

in the amygdala. In the present study, the quadratic response

was detectable only in the left amygdala. The cluster in the

right amygdala showing a quadratic response was very small

(24mm3) and did not pass the statistical threshold corrected

for multiple comparisons.

The regions other than the left amygdala that showed a

quadratic response and survived the correction for multiple

comparisons were the medial prefrontal cortex (MPFC) and
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the precuneus (Table 2 and Figure 3A). Both of these regions

showed a negative quadratic response. As shown in

Figure 3B and C, the response was stronger to faces in the

middle range of the trustworthiness dimension than to faces

at the extremes of the dimension.

DISCUSSION
Evaluating faces on trustworthiness approximates the

valence evaluation of faces that underlies multiple trait

judgments (Oosterhof and Todorov, under review). In this

article, we used a model-based approach to test for the

involvement of the amygdala in the implicit evaluation of

face trustworthiness. First, based on behavioral data, we built

a parsimonious model for representing face trustworthiness.

Second, based on this model, we generated novel faces.

Third, we used these novel faces in an fMRI study and

confirmed the activation of the amygdala as a function of the

trustworthiness of faces. Specifically, replicating previous

studies (Winston et al., 2002; Engell et al., 2007), as the

untrustworthiness of faces increased so did the response in

an area in the right amygdala. Given that participants were

never engaged in explicit person evaluation, this finding

provides further support for the notion that faces are spon-

taneously evaluated on trustworthiness (Engell et al., 2007).

In addition to right amygdala, we also observed a linear

response for bilateral putamen and right anterior insula as

a function of face trustworthiness. As the untrustworthiness

of faces increased, so did the response in these regions.

Winston et al. (2002) observed a similar response in the right

anterior insula. The amygdala, putamen and anterior insula

are often activated in the processing of faces expressing

negative emotions (Phillips et al., 1997; Sambataro et al.,

2006; Dannlowski et al., 2007). These findings provide

additional support for the hypothesis that processing of face

trustworthiness is subserved by the mechanisms underlying

processing of emotional expressions (Oosterhof and

Todorov, under review; Todorov, in press).
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Fig. 2 Amygdala response as a function of face trustworthiness. (A) Amygdala region of a standardized brain. (B) Area in the right amygdala showing a significant negative
linear change, this area showed the same linear response in Engell et al. (2007). (C) Area in the left amygdala showing a significant quadratic change. The statistical maps show
the results of a t-test performed on the coefficients of the linear and quadratic trend regressors on the individual data. (D) Parameter estimates (percent signal change) in the
functionally defined right amygdala as a function of face trustworthiness. (E) Parameter estimates (percent signal change) in the functionally defined left amygdala as a function
of face trustworthiness. For the plots in panels D and E, the faces were binned into six categories according to their trustworthiness. The lines represent the best fitting curves.
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In contrast to the observed linear response in the right

amygdala, the response in an area in the left amygdala

changed as a quadratic function of face trustworthiness. That

is, the amygdala response was strongest to faces on both

extremes of the trustworthiness dimension. This replicates

the findings of Said et al. (in press). To the extent that

judgments of face trustworthiness reflect similarity of facial

features to happy and angry expressions, the left amygdala’s

sensitivity to the extremes of the dimension is consistent

with other studies finding a stronger amygdala’s response

to emotionally expressive faces, independent of the valence

of the emotion, than to emotionally neutral faces (Breiter

et al., 1996; Yang et al., 2002; Winston et al., 2003; Pessoa

et al., 2006). It should also be noted that the pattern of

response in the left amygdala suggests that the amygdala’s

response was more sensitive to differences at the negative

than at the positive end of the trustworthiness dimension,

although the negative linear trend did not reach significance.

It is interesting to note in this context that the rela-

tively poor discrimination between trustworthy- and

untrustworthy-looking faces of bilateral amygdala damage

patients is due to a bias to perceive untrustworthy faces as

trustworthy (Adolphs et al., 1998). That is, although these

patients show an overall positivity bias in judging faces,

this bias is especially pronounced for faces at the negative

end of the trustworthiness dimension (see also Todorov and

Duchaine, in press). This also seems to be the case for people

with Asperger syndrome (Adolphs et al., 2001; White et al.,

2006). The findings from patient and functional neuroima-

ging studies suggest that the amygdala is more tuned to

detecting differences in the negative than in the positive

valence of faces.

In addition to left amygdala, we observed a quadratic

response in the MPFC and precuneus. However, these

regions showed a stronger response to faces in the middle of

the trustworthiness dimension than to untrustworthy and

trustworthy faces. These regions are part of the network

supporting social cognition processes (Gallagher and Frith,

2003; Amodio and Frith, 2006; Mitchell et al., 2005; Mitchell

et al., 2006) and are activated by the presence of familiar

faces (Gobbini et al., 2004; Gobbini and Haxby, 2007). One

interpretation of their pattern of response is that the faces

in the middle range of trustworthiness are relatively more

familiar than the faces on the extremes of the dimension.

Another interpretation is that it is more difficult to infer the

intentions of these faces than faces at the extremes of the

dimension and, as a result, these faces engage regions

supporting theory of mind inferences. These interpretations

remain to be tested.

CONCLUSIONS
We showed that it is possible to construct a model for

representing faces on a specific trait dimension and to use

computer model-generated 3D faces to search for the neural

substrate of face evaluation. This approach has two distinct

advantages. First, in contrast to correlation-based explora-

tory approaches (Engell et al., 2007) in which faces are rated

on a trait dimension and then the neural responses are

regressed on these ratings, it is a theory validation approach.

Second, it allows the investigator to have precise control over

the facial stimuli and to generate an unlimited number of

faces that vary on a particular dimension of interest.

As noted in the introduction, trait judgments from faces

are highly correlated with each other. For example, for the

set of standardized faces used by Engell et al. (2007),
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Fig. 3 (A) Regions in the medial prefrontal cortex and precuneus showing significant
quadratic effects as a function of face trustworthiness. The results of a t-test
performed on the coefficients of the quadratic trend regressors on the individual data.
(B) Parameter estimates (percent signal change) in the functionally defined MPFC as
a function of face trustworthiness. (C) Parameter estimates (percent signal change) in
the functionally defined precuneus as a function of face trustworthiness. For the plots
in panels B and C, the faces were binned into six categories according to their
trustworthiness. The lines represent the best fitting curves.

Table 2 Brain regions responding significantly to face trustworthiness

Regions responding linearly Volume (mm3) x y z t-value

Left putamen 402 �16 12 �4 4.48
Right amygdala 110 26 1 �14 2.56

Regions responding quadratically
Precuneus 478 �1 �57 39 4.34
Medial prefrontal cortex 458 1 58 19 4.30
Left amygdala 271 �21 �2 �10 3.81

The t-value for the voxel with maximum activation in the cluster is reported.
Coordinates of this voxel are reported in Talairach space.
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judgments of trustworthiness correlated 0.75 with judgments

of attractiveness, �0.76 with judgments of aggressiveness

and 0.63 with judgments of intelligence. These high

correlations make it difficult to disentangle the contribu-

tions of face evaluation on specific dimensions to neural

responses. For example, Winston et al. (2007) recently found

a non-linear amygdala response to facial attractiveness.

However, given the high correlation between face trust-

worthiness and attractiveness, it is possible that this response

was driven by the shared variance of attractiveness with

trustworthiness. The standard approach is to statistically

control for the shared variance among various judgments,

but this approach can reduce the statistical power of

experiments and, in many cases, it would be difficult to

decide on an a priori basis what judgments should be

controlled. The alternative to this approach is to experi-

mentally, rather than statistically, unconfound contribu-

tions of different dimensions of face evaluation to neural

responses. This alternative approach is feasible if the varia-

tion of faces on the dimensions of interest can be modeled,

as we showed here. Such models can produce an unlimited

number of faces varying on specific dimensions and the faces

can be orthogonalized on the dimensions of interest.
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