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Results on simulated dato Results on real fMRI data (continued]

Cross-validation across subjects Cross-validation across subjects and runs Ward (structural constraints)

InstabilityScore InstabilityScore

* Apply clustering methods to searchlight RSA to functionally parcellate the cerebral cortex

* Investigate reproducibility for different clustering algorithms

* Compare experiment-specific parcellations to publicly available functional and anatomical parcellations

Subjects

* Investigate the effect of different cross-validation schemes to reduce the effect of physiological noise [1]
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Metrics to compare cluster solutions

Homogeneity [5]

Results on real fMRI data

* Reproducibility procedure (inspired by [2] and [3], see figure below) using metrics

- Adjusted Rand Index (ARI) [4] AMI ARI InstabilityScore 0.8l Representational geometry Functional connectivity Anatomy
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Reproducibility Procedure [2, 3] . !
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k Conclusions

Cluster solutions on full datasets according to different RDM estimations

Datasets * Meaningtul parcellations can be obtained by clustering shared representational geometries
k-means * None of the methods tested provided “the ultimate solution” for whole brain parcellation according to
Simulated reproducibility, and different metrics can provide contrasting results

« 10 simulated subjects v * Experiment-specific parcellations exhibit higher homogeneity compared to resting-state and anatomical
* 1 or 8 runs L parcellations
* 6 contiguous clusters with pattern information " * Reproducibility estimates and cluster solutions remained stable with different cross-validation schemes in
* Different RDM in each cluster the dataset we analyzed
* Random subject- and run-specific noise to simulate E; E Future Directions
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Real {MRI data é ) * This would yield higher instability at greater values of k when the nodes are clustered across folds
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