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Diffusion measurements in the human central nervous system are
complex to characterize and a broad spectrum of methods have been
proposed. In this study, a comprehensive diffusion encoding and
analysis approach, hybrid diffusion imaging (HYDI), is described. The
HYDI encoding scheme is composed of multiple concentric “shells” of
constant diffusion weighting, which may be used to characterize the
signal behavior with low, moderate and high diffusion weighting.
HYDI facilitates the application of multiple data analyses strategies
including diffusion tensor imaging (DTI), multi-exponential diffusion
measurements, diffusion spectrum imaging (DSI) and g-ball imaging
(QBI). These different analysis strategies may provide complementary
information. DTI measures (mean diffusivity and fractional aniso-
tropy) may be estimated from either data in the inner shells or the
entire HYDI data. Fast and slow diffusivities were estimated using a
nonlinear least squares bi-exponential fit on geometric means of the
HYDI shells. DSI measurements from the entire HYDI data yield
empirical model-independent diffusion information and are well-suited
for characterizing tissue regions with complex diffusion behavior. DSI
measurements were characterized using the zero displacement prob-
ability and the mean-squared displacement. The outermost HYDI shell
was analyzed using QBI analysis to estimate the orientation distribu-
tion function (ODF), which is useful for characterizing the directions of
multiple fiber groups within a voxel. In this study, an HYDI encoding
scheme with 102 diffusion-weighted measurements was obtained over
most of the human cerebrum in under 30 min.

© 2007 Elsevier Inc. All rights reserved.

Introduction

The diffusion tensor is a good model of the diffusion-weighted
signal behavior for low levels of diffusion weighting (e.g.,
h< 1500 s/mm?). However, the diffusion tensor model does not
appear to be consistently accurate in describing the signal behavior
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for higher levels of diffusion weighting. The problems with the
simple diffusion tensor model arise from two sources—(1)
apparent “fast” and “slow” diffusing components (Niendorf et
al., 1996; Mulkern et al., 1999; Assaf and Cohen, 1998a, 2000;
Clark and Le Bihan, 2000; Inglis et al., 2001; Ronen et al., 2003;
Maier et al., 2004) that cause the signal decay with diffusion
weighting to appear non-monoexponential; and (2) partial volume
averaging (Alexander et al., 2001) between tissue groups with
distinct diffusion tensor properties (e.g., crossing white matter
tracts, averaging between white matter and gray matter tissues).
The non-monoexponential diffusion behavior is likely to arise from
local restriction effects from cellular membranes.

The effect of partial volume averaging causes ambiguities in the
interpretation of diffusion tensor measurements. Whereas the diffu-
sion anisotropy is generally assumed to be high in white matter,
regions of crossing white matter tracts will have artifactually low
diffusion anisotropy. Consequently, in regions with complex white
matter organization, changes or differences in diffusion tensor
measures may reflect either changes in either the tissue micro-
structure or the partial volume averaging components. As the
diffusion weighting is increased the profiles of apparent diffusivity
reveal non-Gaussian diffusion behavior in voxels with partial
volume averaging (Niendorf et al., 1996; Mulkern et al., 1999;
Assaf and Cohen, 1998a,b, 1999, 2000; Assaf et al., 2000; Clark
and Le Bihan, 2000; Alexander et al., 2001, 2002; Frank, 2000).
Despite these limitations, the applications of diffusion tensor
imaging have been rapidly growing, mainly because of the relative
simplicity and good acquisition efficiency (e.g., it can be acquired
in clinically acceptable times).

A growing number of strategies have been developed for
measuring and interpreting complex diffusion behavior. The
methods vary in their acquisition sampling and analysis
approaches. High angular resolution diffusion imaging (HARDI)
methods (including QBI: g-ball imaging; and GDTI: generalized
DTI) typically obtain images with a constant moderate to high
level of diffusion weighting (b > 1500 s/mm?) over a large number
(>30) of non-collinear encoding directions (Liu et al., 2004;
Ozarslan and Mareci, 2003). The HARDI approaches may be used
to detect and characterize regions of crossing white matter tracts;
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however, they are insufficient for characterizing aspects of non-
monoexponential diffusion.

Other methods attempt to bridge the ability to measure both fast
and slow diffusion with high angular sampling. The most basic
approach is diffusion spectrum imaging (DSI), which obtains
diffusion-weighted samples on a Cartesian sampling lattice in
g-space (Wedeen et al., 2000, 2005). Diffusion displacement spectra
are related to the g-space measurements by a Fourier transform
(Callaghan, 1991; Cory and Garroway, 1990; King et al., 1994,
1997; Assaf et al., 2000; Assaf and Cohen, 2000). While Cartesian
sampling facilitates the straightforward FFT for estimation of the
displacement densities of water molecules, it is not required.
Recently, investigators have proposed non-Cartesian sampling
strategies of g-space (Assaf et al., 2004; Assaf and Basser, 2005;
Wu and Alexander, 2005a,b; Khachaturian et al., 2007). Assaf et al.
applied a model (CHARMED) of slow and fast diffusion
compartments to estimate what they deemed as hindered and
restricted diffusion (Assaf et al., 2004; Assaf'and Basser, 2005). In a
separate study, we demonstrated that the non-Cartesian g-space
sampling strategy that uses concentric spherical shells of constant
|g| may be used for estimating DTI, DSI and QBI properties in a
single experiment (Wu and Alexander, 2005a,b). The number of
encoding directions is increased with each encoding shell to
increase the angular resolution with the level of diffusion weighting.
Thus, the most interior shells may be used for diffusion tensor
analyses where high angular resolution was not essential, and the
outermost shell with the highest diffusion weighting and angular
resolution may be used for HARDI approach such as QBI analysis.
The entire data set from all shells is combined for both DSI and
multi-exponential diffusion analyses. This flexible diffusion
encoding strategy is called hybrid diffusion imaging (HYDI).

The concentric shell framework used in the HYDI g-space
scheme provides flexibility in the data features to be emphasized.
DTI works best at lower b values; therefore, the measurements
from the inner shells may be used to estimate the diffusion tensor.
A minimum of six directions are required to estimate the DT
although more may be acquired to improve accuracy. On the outer
shell(s) the number of directions may be increased to better
characterize complex tissue organization. In this case, QBI may be
applied to the outermost shell data. Combining all shells, the whole
HYDI data set may be used for DSI. In addition, the behavior of
g-space diffusion signals was investigated across all shells, and
diffusivities were estimated using both monoexponential and bi-
exponential models. The ultimate goal is to develop an efficient
diffusion imaging measurement strategy that can provide char-
acterization of complex diffusion in a clinically feasible scan time.

In this paper, a basic demonstration of HYDI is performed
using both measured brain image data and simulated data.
Strategies for HYDI image analysis are discussed. Finally, a
summary and demonstration of several quantitative measures that
can be obtained using HYDI are also provided.

Materials and methods
HYDI encoding

The implementation of hybrid diffusion imaging is very similar
to diffusion spectrum imaging (DSI) (Wedeen et al., 2005) except
that g-space samples are placed on concentric shells instead of a
Cartesian lattice. The g-space encoding wave-vector, q, for a
specific HYDI sample using a standard pulsed-gradient spin-echo

pulse sequence is q=7Gd, where 7 is the gyromagnetic ratio, G is
the encoding gradient vector, and 0 is the diffusion-gradient pulse
width. The encoding wave-vectors were placed on 5 concentric
shells in g-space as listed in Table 1. The total number of g-space
encoding samples was 102 including a central ¢g=0 sample, and
the maximum diffusion weighting corresponded to a b value of
9375 s/mm? (corresponding to a maximum ¢=76 mm_'). On each
shell, the samples were arranged uniformly and the number of
encoding directions generally increased with the level of diffusion
weighting (although the 2nd and 3rd shells both had 12 encoding
directions). The specific encoding set is not necessarily optimum
from a sampling density or accuracy standpoint, but does
adequately illustrate the features of the HYDI encoding strategy.
Future studies will be performed to optimize the specific set of
encoding directions.

MRI experiments

In vivo brain data with HYDI were obtained on six healthy
volunteers using a 3 T GE SIGNA scanner (GE Healthcare,
Waukesha, WI). The diffusion weighting (DW) pulse sequence was
a single-shot, spin-echo, echo-planar imaging (SS-SE-EPI) pulse
sequence with diffusion-gradient pulses, dual-echo gradient refo-
cusing to minimize distortions from eddy currents, and cardiac
gating (using a photo-plethysmograph) to minimize signal fluctua-
tion from brain pulsations. The g-space diffusion-encoding scheme
is described above. The maximum b value was 9375 s/mm? with a
maximum DW gradient of 40 mT/m, gradient duration (J) and
separation (A) of 45 and 56 ms, respectively. This sampling scheme
corresponded to a shell spacing of Ag,=15.2 mm ' and a maximum
¢=76.0 mm ' (Table 1). The field of view (FOV=Aq, ') and the
resolution (2max ¢,) ' of the displacement density of water
molecular are 65 pm and 6.57 pm, respectively. Other imaging
parameters included an in-plane voxel size=2 mm (FOV=25.6 cm
and matrix size= 128 x 128), 30 slices with slice thickness=3 mm
covering most of the cerebrum, TE/TR=122/11700 ms and a total
scanning time of approximately 30 min. SNRs were calculated for
each shell. The signals were the mean diffusion-weighted signals at
each shell. The noise was estimated by the standard deviation of
the subtraction of two images at 5=0 s/mm? scaled by a factor of
sqri2) .

HYDI data processing

The HYDI encoding approach is extremely flexible for a wide
spectrum of diffusion image analyses. The acquisition of diffusion-
encoded images on shells with constant diffusion weighting is
amenable to DTI and QBI analyses. The entire data set may be

Table 1

The HYDI g-space encoding scheme

Shell Dir. # Agy (°) ¢: (I/mm) Ag, (I/mm) b value (s/mm?)
1 0

Ist 3 15.2 15.2 375

2nd 12 48° 30.4 15.2 1500

3rd 12 48° 45.6 15.2 3375

4th 24 42° 60.9 15.2 6000

5th 50 30° 76.0 15.2 9375

Total 102 Mean 40° Max 76.0 Mean 15.2  Max 9375
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regridded to a Cartesian lattice for DSI analysis. These approaches
are described here.

At lower levels of diffusion weighting (i.e., b<2000 s/mm?),
the diffusion tensor model is generally a good description of the
signal behavior. In this study, conventional diffusion tensor image
analysis was performed using data from shells with diffusion
weighting (DW) up to b=1500 s/mm? (Table 1, shells 0 to 2). In
addition, diffusion tensor maps were also estimated using the entire
HYDI data set to match the data and SNR for comparisons between
DTI and DSI. The diffusion tensor elements were calculated using
nonlinear least squares estimation with the Camino software
package (Cook et al.,, 2006). DT measures including the mean
diffusivity (MD), the fractional anisotropy (FA) and the major
eigenvector color map were derived from the diffusion tensor
(Basser and Pierpaoli, 1996).

To evaluate the deviation of the diffusion-weighted signals from
an ideal Gaussian distribution (the basis for the diffusion tensor),
we calculated the root-mean-square (RMS) of the g-space signal
residuals from the fit to the diffusion tensor model. The higher
RMS errors reflect larger deviation of the g-space signals from the
Gaussian diffusion model.

At higher levels of diffusion weighting, g-ball imaging (QBI)
appears to yield relatively high angular resolution (Tuch et al.,
2003). Thus, the data in the outermost shell (Table 1—shell 5 with
50 directions at 5=9375 s/mm?) were used for QBI analysis. The
QBI-ODF (orientation density function) was reconstructed using
the Funk—Radon transform (Tuch et al., 2003),

ODFqgi(R) Z/H E(q)dq (1)

7LR

where R is the unit vector of the dynamic displacement and E(q )
is the g-space signal, £(¢ ) = S(q )/S(0). For each direction (R),
the ODF is the integral of g-space signals on the circle
perpendicular to Ron the sphere (e.g., equator).

The entire HYDI data set in Table 1 was used for diffusion
spectrum imaging (DSI) analyses. First, to minimize overestima-
tion of signals near the noise floor, g-space signals were set to zero
if smaller than 2 times of the mean signal in air. Second, non-
uniform g-space signals were regridded onto a 9x9x9 Cartesian
lattice using a bilinear interpolation algorithm (MATLAB function

Fig. 1. Quantitative maps from the HYDI MR experiments. DTs calculated from inner the shells and from the entire HYD data set are shown in the upper and
middle rows, respectively. Inner shells DT was estimated using a linear least squares fit whereas whole data set DT was estimated using a nonlinear least squares
fit. DT measures: FA (a and ¢), MD (b and f) and major eigenvector color map (c and g). PDF measures, including Po (i), MSD (j) and FWHM color map (k)
modulated by Po, were calculated using a DSI reconstruction of the entire HYDI data set. The color codes for both major eigenvector color maps and FWHM
color maps is left—right=red, anterior—posterior=green and superior—inferior=blue. The grayscale of (b), (f) and (j) is 0 to 2500 10~ ® mm?/s. The root-mean-
square (RMS) of residuals between the DT model and the measured g-space diffusion-weighted signals are in (d) and (h). Higher intensity reflects larger
deviation of the DTI model to the real DW signals. (1) The map of the geometric mean of the QBI images (h=9375 s/mm?) normalized by the signal at 5=0.
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“griddatan”) (Barber et al., 1996). After sample interpolation, the
probability density function (PDF) of the water diffusion
displacement at the diffusion time A was calculated using the
Fourier transform (FT) of the normalized g¢-space signals
(Callaghan, 1991; Cory and Garroway, 1990; Assaf et al., 2000,
2002a,b; Wedeen et al., 2000, 2005),

PDF(R,A) = FT[Ex(q)] (2)

where R is the displacement vector of water molecules.
Several measures were derived from the DSI-PDF. The zero
displacement probability

Po=PR=0,A4) 3)

describes the probability density of water molecules that minimally
diffuse within the diffusion time A (Assaf et al.,, 2000; Wu and
Alexander, 2005a,b). The mean-squared displacement (MSD) is
defined as (Wu, 2006)

MSD = /// PDF(R,A) R*’#*R (4)

which describes the average diffusivity within a voxel. The Einstein
diffusion equation, (R 2) = 6AD, describes a linear relation
between the expectation value of R? and the mean diffusivity. A
directional color map is created from measurements of the full-
width at half-maximum, FWHM, ,, ., of the PDF in three orthogonal
directions (Wu and Alexander, 2005a,b). The g-space measures Po
and MSD were first described by Assaf et al. in their one-
dimensional g-space measurements (Assaf et al., 2000, 2002a,b). In
this study, the definition of Po was extended to a three-

dimensional calculation. The definition of the “mean displace-
ment”, however, was slightly different as they calculated the mean
displacement using the FWHM described in the paper by Cory and
Garroway (1990).

The orientation distribution function (ODF) may also be
estimated from the entire g-space data by the radial integral of
the PDF (Tuch et al., 2003; Wedeen et al., 2000),

ODF(R) = l . PDF(pR, A)dp (5)

where pR = R . Note that this definition is different than the ODF
estimated from the QBI analysis in Eq. (1).

To compare PDF measures and DTI measures in specific
tissues, brain segmentation and anatomically specific ROIs were
generated for all six subjects. The Po map was used for brain tissue
segmentation, which used FMRIB’s automated segmentation tool
(FAST) software (Zhang et al., 2001). This approach generated
plausible tissue segmentation maps of gray matter and white
matter. In addition, hand-generated (polygon shaped) regions-of-
interest (ROIs) were created for six WM regions and three deep
brain GM regions. The WM ROIs included the corpus callosum
splenium (CCs), corpus callosum genu (CCg), posterior limb of
internal capsule (PLIC), prefrontal WM (WMpf), occipital WM
(WMocc) and centrum semiovale (CS), and the GM ROIs included
the thalamus (Th), caudate nuclei (Cau) and putamen (Put). The
mean and standard deviations of Po, FA and MD for both DTI and
DSI analysis were computed for the entire WM segmented region
and all of the WM and GM subregions.

The multiple-shell acquisition of HYDI also facilitates the
calculation of both the arithmetic and the geometric means of
diffusion signals for specific levels diffusion weighting (|g|).

Table 2
ROI studies of restriction measure (Po), anisotropy measures (FA from both inner shells and all shells) and mean diffusivity measures (MSD and MD) across six
subjects
ROI Po FA FA MD=MSD/6A MD (10 ® mm?/s) MD (10 ® mm?/s)
Inner shells All shells (10~° mm?/s) Inner shells All shells
CCS 0.113+0.010 0.857+0.104 0.922+0.046 710£33 652+141 544+157
(Y% 0.087 0.121 0.050 0.046 0.227 0.290
CCG 0.099+0.010 0.754+0.143 0.909+0.055 734+43 820+218 805+357
(Y% 0.103 0.190 0.060 0.058 0.266 0.442
PLIC 0.126+0.009 0.694+0.118 0.811£0.079 696+29 637+81 479+85
(Y% 0.074 0.169 0.097 0.042 0.126 0.177
WMpre 0.108+0.012 0.479+0.152 0.688+0.140 723+£28 714+114 609+149
CvV 0.107 0.318 0.203 0.039 0.160 0.245
WMocci 0.121£0.011 0.559+0.141 0.755+0.113 704+£27 661+102 527+124
(Y% 0.088 0.252 0.149 0.039 0.154 0.237
CeSe 0.121£0.013 0.482+0.141 0.695+0.145 704+29 66087 518+104
CV 0.111 0.293 0.209 0.041 0.133 0.200
Thalamus 0.088+0.014 0.439+0.136 0.518+0.131 710+42 745+177 710+325
(A% 0.160 0.310 0.252 0.059 0.238 0.459
Caudate 0.072+0.009 0.361£0.163 0.363+0.161 702+41 750+142 744+148
(Y% 0.120 0.450 0.444 0.058 0.189 0.199
Putamen 0.076+0.008 0.382+0.148 0.363+0.136 T11+41 693+139 604+156
(6AY 0.102 0.388 0.374 0.058 0.200 0.225

Abbreviations for ROI: CCS: corpus callosum splenium; CCG: corpus callosum genu; PLIC: posterior limb of internal capsule; WMpre: prefrontal white matter;

WMocci: occipital white matter; CeSe: centrum semiovale.
The error denotes one standard deviation across six subjects and ROI.

CV denotes the coefficient of variation, which is defined as the ratio of the standard deviation to the mean value.
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Means of the diffusion-weighted signals were then used to
estimate mean diffusivities. Since the diffusion is not expected
to be monoexponential over the entire range, two strategies were
implemented for characterizing the diffusivities. The first was to
estimate the mean apparent diffusivities over small ranges of b
values. In this case, monoexponential diffusion was estimated for
different shell sub-ranges of the mean g-space signals —i.e., b=0to
1500 s/mm? (shells 0, 1, 2); b=375-3375 s/mm? (shells 1, 2, 3);
bh=1500-6000 s/mm?* (shells 2, 3, 4); and b=3375-9375 s/mm’
(shells 3, 4, 5). Obviously, the data in the higher b value ranges will
emphasize the slow diffusion components and the low b value
ranges the faster diffusion components. This was done for both the
geometric and arithmetic means.

In the second approach, the geometric means, GMy, across all
shells, s, were fitted to a one-dimensional bi-exponential model
using a nonlinear least squares algorithm. The bi-exponential
model is described as

GM; = fiexp(—D; - b) + frexp(—D; * by) + const. + noise.  (6)

where f; and f, are the volume fractions, D is the assumed fast
diffusivity, D, is the assumed slow diffusivity, and const. is
constant. This model has one constraint, i.e., fi+f=1, and 4
variables (f;, Dy, D, and constant) needed to be estimated. The
HYDI acquisition has 6 shell sample points (including measure-
ments at b=0) that were used for the estimation.
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Computer simulation

To study the ODF angular errors and angular resolution of the
HYDI encoding scheme, a Monte Carlo noise simulation was
performed. Both fast and slow diffusion compartments (Clark and
Le Bihan, 2000; Maier et al., 2004) were simulated for each tract
group, including for crossing white matter tracts. Diffusion
measurements in corpus callosum were used to simulate fast and
slow Gaussian diffusion functions (Maier et al., 2004). The g-space
signal was modeled using

S@)=50)S" Urexp(—7 Died') +fuexp(<7 Ded)] (1)
i=1

where n was the total simulated fiber number, f; was the volume
fraction of the fast component of the ith fiber, and fi; was the
volume fraction of the slow component. The summation of all
volume fractions was 1, i.e., Z:lzl_ﬁf +fis = 1. Dy and Dy
described the diffusion tensor for both fast and slow component
of the ith fiber assuming no exchange between compartments.
Gaussian random noise was added the g-space signals in
quadrature (Pierpaoli and Basser, 1996). The magnitude of noised
signals was used for data processing. The SNR was calculated as
the ratio of the zero DW signal to the standard deviation of the
Gaussian noise. Six SNR levels (i.e., 10, 20, 30, 40, 50 and 100)
were studied, and for each SNR level, 100 random trials were

10 —WM |
——
52
o 5
(b)

00 200 400 600 806 1000 1200
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—eyl

X 5
I A -
0 200 400 600 800 1000 1200
MD  (10°mm?2/sec)
10 —_—WM |
o
o 5
o,
(f) M ,,

0 n
0 200 400 600 800 1000 1200
MD  (10®mm2/sec)

Fig. 2. Histograms of PDF and DT measures for whole brain WM and GM. PDF measures: (a) Po and (b) MSD. DT measures from entire HYDI data: (c) FA and
(d) MD. DT measures from inner shells: (¢) FA and (f) MD. WM and GM were selected by using FAST segmentation on Po maps. The histograms were generated

from the combined results of six subjects.
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Table 3

Statistical summary of restriction measure (Po), anisotropy measures (FA from both inner shells and all shells) and mean diffusivity measures (MSD and MD) for

both WM and GM, which were segmented by FAST on Po maps of six subjects

Po FA FA MD=MSD/6A MD (10~ ® mm?/s) MD (10~ ¢ mm?/s)
Inner shells All shells (10”% mm?/s) Inner shells All shells
WM 0.113+0.013 0.505+0.182 0.671+0.183 701+39 660+140 564+191
(0\% 0.114 0.360 0.273 0.056 0.212 0.339
GM 0.076+0.012 0.299+0.164 0.329+0.180 679+52 778+216 799+360
(0\% 0.155 0.548 0.548 0.077 0.278 0.451

The error denotes one standard deviation across six subjects and whole brain GM/WM.
CV denotes the coefficient of variation, which is defined as the ratio of the standard deviation to the mean value.

simulated to study ODF angular error and ODF angular resolution,
respectively.

For the investigation of errors in the estimated fiber direction, a
single-fiber (i.e., n=1) WM model was used. We generated 100
uniform tensor orientations over one hemisphere using an
analytical approach (Hasan et al., 2001; Wong and Roos, 1994).
The angular error was defined as the angular differences between
the ideal direction and the direction of the maximum likelihood of
the ODF profile which is obtained from either the QBI (outermost
shell) or DSI (all shells) analyses (Campbell et al., 2004, 2005).
For the investigation of the ODF angular resolution, a WM model
of two-crossing fibers (i.e., n=2) was used. Four intersection
angles (45°, 60°, 75° and 90°) and 100 random trials for each
intersection angle were simulated. The ODF angular resolution is
defined as the average number of fibers that can be separated from
the ODF profile of the crossing-fiber configuration among the 100
random trials.

Results

Maps of diffusion tensor (DT) measures calculated from HYDI
inner shells are shown in Figs. 1(a)—(c). Maps of DT measures
calculated from the entire HY DI data set are shown in Figs. 1(e)—~(g).
PDF measures from DSI analysis are in Figs. 1(i)—(k). There are
some similarities between the contrast in FA and Po maps (Figs.
1(a), (e) and (i)), MD and MSD (Figs. 1(b), (f) and (j)), and the
eigenvector and FWHM color maps (Figs. 1(c), (g) and (k)).
However, one difference between FA and Po appeared at the
fiber crossing areas, such as the prefrontal and occipital WM, the
Po map (Fig. 1(i)) demonstrated a more uniform intensity in
WM than the FA maps (Figs. 1(a) and (e)). This observation was
further supported by an ROI study across 6 subjects (Table 2).
For single-fiber ROIs including the corpus callosum splenium
(CCs), corpus callosum genu (CCG) and posterior limb of
internal capsule (PLIC), FA values of the whole data set (Table
2, column 4) were larger than 0.8 with the coefficient of va-

riation (CV) of ~5-10%. However, for the complex WM ROIs
including prefrontal WM (WMpre), occipital WM (WMocci) and
centrum semiovale (CeSe), mean FA (all shells) values decreased
to ~0.7 with increased CV of 15-20%. In contrast, Po values
(Table 2, column 2) are more consistent (~0.10—-0.12) between
homogeneous and heterogeneous WM ROIs with similar CVs of
roughly 10%. In general, WM FA values from the inner shells
(Table 2, column 3) were smaller and more heterogeneous
(0.48-0.86) than that from the whole data set (Table 2, column
4) with larger CVs (12—-32%), whereas GM FA values (0.36—
0.52) and their CVs (25-45%) were very similar in both data
sets.

Maps of Po also showed that WM (mean+SD=~0.115+0.010)
including complex regions appeared consistently separable from
deep brain GM (~0.0786+0.010). Whole brain segmentation was
performed on the Po maps using FMRIB’s automated segmentation
tool (FAST) software (Zhang et al., 2001). The segmented regions
were used to construct histograms of estimated Po, FA and MD
measures for regions of GM and WM (Fig. 2). The statistics of these
distributions are listed in Table 3. It is clear that the histogram
overlap between GM and WM is much less for Po than FA. This is
primarily because FA in WM is very heterogeneous. The MD
distribution estimated from the DSI analysis is also much narrower
than the MD estimates from the DTI analyses. However, the
distributions for both GM and WM are highly overlapping in all
cases, although the relative peak positions are reversed for DSI and
DTI analyses.

The WM and GM SNRs for each shell are listed in Table 4.
These data were from one subject, and the results were similar in
other subjects. The SNR decreased as the b value increased. At
the outermost shell (h=9375 s/mm?”), the WM had mean and
peak signals of 13% and 30% of the b=0 signal, respectively;
and the GM had mean and peak signals of 5% and 16%,
respectively.

To investigate the consistency between the estimated diffusion
tensor model and the measured g-space signals in the HYDI data,
maps of the root-mean-square difference between the DT model

Table 4

WM and GM SNRs of each shell

Shell 0 Ist 3rd 4th 5th

b value (s/mm?) 0 375 3375 6000 9375

WM SNR 22.65+5.92 17.67+4.13 9.01+2.00 5.02+1.20 3.57+0.90 2.85+0.71
GM SNR 29.33+11.25 21.26+6.38 9.09+2.40 3.38+0.82 1.88+0.44 1.58+0.32

Whole brain WM and GM were segmented by input Po map to FAST algorithm. The standard deviation was calculated across whole brain ROI.
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Fig. 3. Mean diffusion signal maps and diffusivity maps at each shell. (a) The arithmetic means. (b) The geometric means. (c) Shell diffusivities estimated from
arithmetic means of three contiguous shells. (d) Shell diffusivities estimated from geometric means of three contiguous shells. Diffusivities were estimated using

a linear least squares fit with a monoexponential model.

and the g-space DW signals were generated and are shown in
Figs. 1(d) and (h). The non-zero intensities in WM indicated the
inadequacy of the DT model for describing diffusion signals at
high levels of diffusion weighting. The model errors were
considerably higher in WM than GM (particularly cortical GM)

where the RMS residuals are close to zero. These results were
consistent with the measurement of DT Kurtosis by Jensen et al.
(2005) and Lu et al. (2006). A similar map was generated by
taking geometric mean of the QBI images normalized by the
signal at h=0 (see Fig. 1(l)). Again, the signal in WM was

Table 5
Means of diffusion signals and diffusivities at each shell
Shell 0 1 2 3 4 5
b value (s/mm?) 0 375 1500 3375 6000 9375
WM Arithmetic mean 7424197 587+96 301+58 169+40 121+33 97+27
Geometric mean 7424197 583+95 282+57 142+37 93+27 72421
Da (10~ % mm?/s) 609+ 100 410+63 203+49 93429
Dg (10~° mm?%/s) 656+110 468+76 246+58 113+41
GM Arithmetic mean 962+373 727+171 317+95 122447 70436 60+32
Geometric mean 962+373 723+170 307+94 103+42 53+£28 44+24
Da (10~° mm?*s) 760+153 600+92 341478 122+44
Dg (10" ° mm?%s) 785+161 657+104 396+89 143+57

Da: the diffusivity calculated using a linear least squares fit of a monoexponential model on arithmetic means of three contiguous shells, i.e., shell 0-2, 1-3,2—4

and 3-5.
Dg: the diffusivity calculated using geometric means of three contiguous shells.

Whole brain WM and GM were segmented using Po map and FAST algorithm. The standard deviation is across whole brain ROI of one subject.
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hyperintense from the restricted diffusion signals. It should be
noted that the RMS residuals map for the inner shell DTI data
appeared more homogeneous (Fig. 1(d)) than the RMS residuals
map for the DTI from the entire data (Fig. 1(h)), particularly in
regions of crossing WM.

The HYDI acquisition scheme of spherically symmetric shell of
constant g-space radii facilitated the estimation of diffusivities over
different diffusion weighting ranges. In this study, both the
arithmetic and geometric means were computed for g-space signals
at different shells as shown in Figs. 3(a) and (b), and the regional
statistics for whole brain WM and GM are listed in Table 5. The
tissue contrast between GM and WM appeared to increase with the
level of diffusion weighting. The image contrast for both the
geometric and arithmetic mean maps was similar although the
arithmetic mean signal was consistently higher and appears less
noisy, particularly at higher levels of diffusion weighting.

Maps of estimated diffusivities over ranges of three contiguous
g-space shells using a linear least squares fit of a monoexponential
model are shown in Figs. 3(c) and (d) for both the arithmetic and
geometric means, respectively. Mean diffusivity measurements
over ranges of |g| for WM and GM are summarized in Table 5. The
mean diffusivities decreased as the diffusion weighting was
increased. This observation indicated that the diffusion over the
entire range of b values was not monoexponential. At high
diffusion weighting, the estimated diffusivities of WM were much
lower than that in GM. However, for the highest range of diffusion
weighting (shells 3—5: 5=3375-9375 s/mm?) the MD maps appear
quite noisy.

Fig. 4 and Table 6 summarize the results from bi-exponential
fitting (Eq. (6)) of the geometric mean data. The results
demonstrated similar fast diffusion signal fractions (f; =74%) and
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05

2000
1500
1000

500

Table 6
Results of a nonlinear fit of a bi-exponential model on shell geometric means

h 5 D, (107 mm?s) D, (10~ ¢ mm%s)
WM 0.74£0.14  0.26+0.14  996+355 144+116
GM  0.74+0.16 0.26+0.16 1067+447 377+176

Whole brain WM and GM were segmented using Po map and FAST
algorithm. f; and f; are volume fractions for fast diffusivity, Dy, and slow
diffusivity, D,, respectively. The standard deviation is across whole brain
ROI of one subject.

fast mean diffusivities (D; ~1000x 10~ mm?/s) for GM and WM.
However, the slow mean diffusion component for WM (D,
~144x10~° mm?/s) was slower than GM (~377x 10~ % mm?/s),
which was consistent with the higher levels of restricted diffusion
in WM. The fast diffusion component of the mean CSF signals was
>99%.

The organization of WM fiber tracts was visualized using ODF
profiles generated from QBI analyses using the 50 directional data
points in the outer shell of the HYDI encoding. Fig. 5 illustrates
examples at the level of the pons (a) and the centrum semiovale (b).
In Fig. 5(a) the fiber tract organization in the pontine region
revealed corticospinal tracts (blue), central tegmental tract (blue),
transverse pontine fibers (red) and the middle cerebellar peduncle
fibers (green). In Fig. 5(b), the fibers of the cingulum (green),
corona radiata (blue), transverse fibers of corpus callosum (red)
and the subcortical arcuate fibers (red) were visualized. These ODF
profiles illustrated regions of crossing fibers between these fiber
groups at the sub-voxel level.

Simulation results of the ODF angular error versus SNR for
both HYDI (DSI analysis) and QBI (outer shell only) are

0.5
0.4
0.3
0.2

0.1

600
500
400
300
200
100

Fig. 4. Results of a nonlinear least squares fit of a bi-exponential model (Eq. (6)) on geometric means in Fig. 3(b). (a) The volume fraction of D,. (b) The volume
fraction of D,. Note that (f; +/5) was assumed to be 1 in this study. (c) The assumed fast diffusivity, D;. (d) The assumed slow diffusivity, D,.
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Fig. 5. ODF profiles generated using the QBI algorithm on the outermost shell of HYDI. The regions of interest (ROI) were located at (a) the pons and (b) the
centrum semiovale. In general, QBI-ODF has higher angular resolution to resolve multiple crossing fibers. Abbreviation: AF: subcortical arcuate fibers, Cing:
cingulum fibers, CR: corona radiata, CS: cortical spinal tract, CTT: central tegmental tract, MCP: middle cerebellar peduncle, SLF: superior longitudinal
fasciculus, TPF: transverse pontine fibers.

summarized in Fig. 6. For SNR >20 (b=0 data), the angular error The influence of noise on the detection of multiple fibers was
was less than 5° for both approaches. Simulated noise-free ODF evaluated and is summarized in Fig. 7(b). The results were
profiles for crossing WM fibers at different angles are shown in (a). relatively insensitive to the SNR level. For a 90° intersection angle,



626 Y-C. Wu, A.L. Alexander / Neurolmage 36 (2007) 617-629

20 T T
Il SNR 10
Il SNR 20
15t [ SNR 30 H
[ SNR 40

[_] SNR50

.

HYDl 10z HYDI @Bl

o

angular error (degree)
5

o

Fig. 6. Estimated angular errors of a single-fiber ODF. The angular error
denotes the angular difference between the ideal fiber direction and the
direction of the maximum likelihood of ODF profile. The error bar denotes
one standard deviation across total 1000 trials (i.e., 10 random trials times
100 directions). The maximum b value for all schemes is 10,000 s/mm?>.

both methods reliably detected two fibers groups. At 75° and 60°
intersection angles, QBI was slightly superior in detecting two
fiber groups. At 45°, both methods consistently detected only a
single-fiber group. The ability to detect multiple fibers was reduced
when the maximum b value was decreased (results not shown).

Discussion

In this study an alternative g-space encoding scheme, HYDI,
was described. It was an efficient diffusion imaging approach that
was flexible for a wide range of image analysis strategies from a
single data set. To our knowledge, this was the first demonstration
of simultaneous DTI, DSI, QBI and bi-exponential diffusion
analysis from a single diffusion-weighted data set. Possibly, the
most similar experimental design is the CHARMED method (Assaf
et al., 2004; Assaf and Basser, 2005), which has a similar g-space
sampling scheme of concentric g-space shells. From the
CHARMED analysis, one may estimate a single hindered (fast)
diffusion tensor component and multiple restricted (slow) diffusion
components. Thus, the CHARMED method provides information
similar to the diffusion tensor, fast/slow diffusion and complex WM
organization in a single acquisition. However, the CHARMED
method is based upon specific models of diffusion; thus, the results
depend heavily on the assumed model. The proposed HYDI
framework did not assume any underlying models for most of the
analyses — DSI and QBI — and for other analyses it used simpler
models for the data — the diffusion tensor and bi-exponential
diffusion decay. As the data were acquired using similar schemes, it
may be possible to perform CHARMED analysis on HYDI studies.
Future studies are necessary to compare HYDI and CHARMED
methods more directly.

In a comparison of DSI and DTI measures, the DSI Po and MD
indices appeared to be more homogenous and consistent than the
DTI FA and MD measures in WM areas. DTI has been shown to be

Fig. 7. ODF angular resolution. (a) Simulated noise-free ODF profiles of two
crossing fibers with four different intersection angles from 90° to 45°. Two
methods were compared including DSI processing on HYDI whole data set,
HYDI,(,, and QBI processing on the outermost shell of HYDI, HYDI-
QBIs. (b) The average fiber number detected using ODF profiles. The bar
plot denotes the mean and standard deviation across 100 trials of random-
noise on g-space diffusion-weighted signals. The plots from top to bottom
correspond to 90°, 75°, 60° and 45°.

highly sensitive to averaging between two or more white matter
fiber groups in a voxel (Alexander et al., 2001). Conversely, the Po
map was sensitive to the most restricted diffusion component of the
distribution, which was relatively independent of multiple fiber
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groups. In addition the MD estimated from the DSI PDF appeared
to have narrower distributions in comparison with the MD
measurements from DTI. Obviously, there were challenges
associated with comparing DSI and DTI measures as much more
data were required for DSI analysis. Consequently, the DTI
analysis was performed using two different partitions of the data —
the inner shells (0-2) and the entire HYDI data set. The inner shell
DTI analysis was more comparable to many published DTI studies
although the TE is quite long causing the SNR to be suboptimal.
The DTI analysis of the entire data enabled the comparison of DTI
and DSI using the same data although this has inherent problems
from the standpoint that the diffusion at high levels of diffusion
weighting is non-Gaussian. It is interesting that the WM FA from
the entire data set was significantly higher than values that are
typically measured in most DTI studies. This was because the
restricted diffusion measurements in the directions perpendicular to
WM tracts exhibited very slow diffusivities, which increased the
FA. The MD of WM was also shifted towards lower values. These
observations were caused by more apparent restricted diffusion at
higher diffusion weighting. An alternative comparison strategy
would have been to collect DTI data with an optimized protocol
over the same period of time as the HYDI experiment. The latter
option was not considered as the acquisition would have been too
lengthy compared to most DTI protocols and it is well known that
FA is quite heterogeneous in the CNS even with high SNR data.

In the end, what is most critically important is how these
measures reflect tissue changes associated with disease processes,
thus future studies will need to evaluate these methods in
different animal models and disease groups. To date, only a small
number of studies have been published regarding the relation-
ships between disease and high diffusion weighting measure-
ments including g¢-space based approaches and fast/slow
diffusivity measurements. Several recent studies showed that the
g-space measurements appeared to be sensitive to both changes
associated with normal brain development (Ben Bashat et al.,
2005) and disease in multiple sclerosis (Assaf et al., 2002a,b),
vascular dementia (Assaf et al., 2002a,b), dysmyelination (Biton
et al., 2006), spinal cord injury (Nossin-Manor et al., 2002) and
gliosis associated with epilepsy (Eidt et al., 2004). Measurements
of fast and slow diffusivity have recently been investigated in
prostate and brain tumors (Mulker et al., 2006; Maier et al., 2001,
respectively) and stroke (Brugieres et al., 2004). Ultimately, the
utility of these new high diffusion weighting approaches like
HYDI will depend upon whether they also improve the speci-
ficity of tissue pathology.

Several researchers have described methods for characterizing
non-Gaussian diffusion including diffusion kurtosis (Jensen et al.,
2005; Lu et al., 2006) and stretched exponentials (Bennett et al.,
2003, 2004). In this study, non-Gaussian behavior was characterized
by using the root-mean-square (RMS) of the residuals from the
diffusion tensor fit. This approach was attractive in its simplicity and
was similar to the Chi-squared error measure used by Maier et al.
(2003) for characterizing tumor pathology. As Figs. 1(d, h)
demonstrated, the RMS residuals from the Gaussian fit were
greatest in WM, intermediate in GM and dark in CSF. The RMS
residual map in Fig. 1(d) was similar to the geometric or arithmetic
mean signal images at the highest diffusion weighting (Figs. 1(1) and
3(a, b)) as the simple DT model predicted that the signal will be
almost completely attenuated at the highest diffusion weighting. The
appearance of the RMS residual map for DT fit to the entire HYDI
data was slightly different and also appears more heterogeneous.

For applications, such as white matter tractography, which
require the characterization of complex white matter organization
(e.g., fiber crossing and orientations), computer simulations
showed that the HYDI-QBI appears to provide slightly higher
angular resolution than the full HYDI data set. Overall, the ODF
profiles from QBI appeared sharper with fewer artifactual side
lobes. The angular resolution may be improved by increasing the
number of measurements in the outer shell although the relative
improvement appeared to be small in a recently published study
(Hess et al., 2006).

In this study, the QBI-ODF were calculated using the straight
Funk—Radon Transform (Tuch et al., 2003; Tuch, 2004), although
recent studies by Hess et al. (2006), Ozarslan et al. (2006) and
Khachaturian et al. (2007) describe alternative methods that may
improve the accuracy of the ODF profiles further. The latter two
approaches utilized diffusion measurements at lower diffusion
weighting to improve the ODF performances. However, unlike our
multiple-shells ODF, a direct radial integration of PDF, which is
considered as a linear operation, these approaches used more
complicated computation algorithms such as model fitting with
assumptions of bi-exponential decay (Ozarslan et al., 2006) and
nonlinear fusion of spherical Gabor wavelet bases (Khachaturian et
al., 2007). The latter study by Khachaturian et al. is consistent with
our ODF comparison results between DSI and QBI. They
demonstrated that the ODF profiles from QBI appeared sharper
than the ODF profiles obtained through a linear combination of
QBI and DTI data, which has some similarities to the DSI data
used here. However, their nonlinear fusion method did appear to
yield sharper ODF profiles. Future studies will investigate the
application of more advanced methods for ODF estimation, which
should be feasible using HYDI.

The protocol described here may be feasible for research
applications with a reasonable scan time (< 30 min) for whole brain
coverage with 30-50 slices. The overall scan time of this protocol
was likely too long for practical use in the clinic. However, targeted
studies with fewer slices may be possible in a clinically feasible
time (under 10 min). It should be noted that the image data was
collected using cardiac gating, which appears to reduce the signal
variability and artifacts from pulsatile brain motion (Nunes et al.,
2005). Since high b values will increase the sensitivity to
physiological motion, cardiac gating is recommended. However,
shorter scans (i.e., ~30-40% reductions in scan time) may be
achieved without gating at the increased risk of local motion
artifacts. Future studies may be able to identify the specific g-space
signal features that are critical for assessment of disease-related
changes to tissue microstructure. This strategy may enable the
technique to be tailored to general protocols that would be practical
in a clinical setting.

One issue related to quantitative diffusion-weighted measure-
ments was the use of signals near the noise “floor”. In DTI, low DW
signals cause an underestimation of the signal attenuation, thus the
diffusivities will be underestimated (Jones and Basser, 2004). This
was likely the case for our diffusion measurements in the outer
(h=6000 and 9375 s/mm?) shells (Fig. 3 and Tables 5 and 6). These
estimates may be improved using Rician noise models for low
signals (Koay and Basser, 2006) and this will be investigated further
in futures studies.

In this study, the g-space encoding scheme of HYDI was
derived empirically and is not necessarily optimal. Future studies
will investigate the effects of different sampling strategies.
However, there are several important strategies in designing a
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good HYDI scheme. First, the angular sampling on each shell
should be as uniform as possible. Second, the number of g-space
shells is an important consideration as this will enable the
characterization of non-Gaussian diffusion decay. Overall, the
HYDI approach is very flexible and the optimum encoding scheme
will depend upon the application and the information that is
deemed most important. For example, more samples in the outer
shells (e.g., improved angular resolution) may be more optimal for
characterizing complex WM and white matter tractography studies
in regions with crossing white matter tracts. Conversely, in studies
that focus on DTI properties, it may be more desirable to obtain
more measurements at lower diffusion weighting.

Finally, since HYDI uses non-Cartesian sampling, under-
sampling errors will appear differently from Cartesian DSI. In
the current HYDI encoding strategy, the sampling density in the
radial direction is higher than the angular direction, which may
lead to aliasing in the angular direction. The tradeoff between
Cartesian DSI and HYDI is the increased flexibility in the DW
image analysis methods being used for HYDI. Future studies will
need to compare HYDI directly with DSI to establish the relative
benefits.

Conclusion

To our knowledge, this study is the first to demonstrate simul-
taneous measurements of DTI, QBI, DSI and bi-exponential
diffusion from a single data set in a moderate scan time on a
clinical MRI scanner. The proposed HYDI method is a flexible g-
space encoding scheme that may be tailored to emphasize specific
diffusion features and is amenable to a wide range of diffusion
image analysis strategies. Further investigations are necessary to
optimize the HYDI encoding scheme for specific applications.
Finally, the approach needs to be evaluated for characterizing
clinical pathology relative to diffusion tensor imaging to establish
whether the increase in scan time is justified.
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