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Computation of Diffusion Function Measures
in g-Space Using Magnetic Resonance
Hybrid Diffusion Imaging

Yu-Chien Wu*, Aaron S. Field, and Andrew L. Alexander

Abstract—The distribution of water diffusion in biological
tissues may be estimated by a 3-D Fourier transform (FT) of diffu-
sion-weighted measurements in g-space. In this study, methods for
estimating diffusion spectrum measures (the zero-displacement
probability, the mean-squared displacement, and the orienta-
tion distribution function) directly from the g-space signals are
described. These methods were evaluated using both computer
simulations and hybrid diffusion imaging (HYDI) measurements
on a human brain. The HYDI method obtains diffusion-weighted
measurements on concentric spheres in g-space. Monte Carlo
computer simulations were performed to investigate effects of
noise, g-space truncation, and sampling interval on the mea-
sures. This new direct computation approach reduces HYDI data
processing time and image artifacts arising from 3-D FT and
regridding interpolation. In addition, it is less sensitive to the
noise and g-space truncation effects than conventional approach.
Although this study focused on data using the HYDI scheme, this
computation approach may be applied to other diffusion sampling
schemes including Cartesian diffusion spectrum imaging.

Index Terms—Diffusion, diffusion spectrum imaging, diffusion
tensor imaging, orientation distribution function, g-space.

1. INTRODUCTION

IFFUSION measurements with magnetic resonance
Dimaging (MRYI) is a useful tool for the noninvasive study
of microstructural architecture in the brain and other tissues.
The diffusion tensor is a widely used and elegant model of
water diffusion [1]. This model assumes that the water diffusion
behavior follows a 3-D normal distribution with the diffusion
tensor as the covariance matrix

P(R,A) = (1//(4nAP[D]) exp(~ R D™'R/4A) (1)
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where P is the probability density of diffusion displacements
or diffusion probability density function (PDF), R is the dif-
fusion displacement vector, A is the diffusion time, and D is
the diffusion tensor. The distribution of diffusion displacements
may be estimated using signal measurements at multiple dif-
fusion-weighting levels and directions, represented by the dif-
fusion-weighting wavevector, ¢ = (7/2r)G6, where G is the
diffusion gradient vector, and ¢ is the diffusion gradient pulse
width [2], [3]. Theoretically, there is a Fourier relationship be-
tween the ¢-space signals and the PDF

P(R,A) = FTTHEA(])] 2)

where F is the normalized g-space signal.

For the diffusion tensor model, both the PDF and g-space
signal are assumed to be Gaussian functions. Thus, for simple
multivariate Gaussian diffusion i.e., mono-exponential decay as
a function of the diffusion-weighting b

S =S, exp(—bg" Dg) A3)

where ¢ is the gradient direction unit vector, one may use the
diffusion tensor to estimate the PDF directly [1], [4]. However,
complex tissue organization (e.g., crossing white matter (WM)
fibers), nonmono-exponential diffusion decay (e.g., so-called
fast and slow diffusion), and partial volume averaging effects
between different tissues (e.g., contributions from gray matter
(GM), WM, and cerebrospinal fluid (CSF) in a single voxel)
will cause the diffusion to not be Gaussian [5]-[15]. In this
case, g-space measurements can be used to accurately charac-
terize the true PDF, which can reveal the distribution of fiber
directions and information about “fast” and “slows” diffusion.
Researchers have proposed a broad spectrum of methods to
overcome limitations of the simple diffusion tensor. Some
approaches focus mainly on directional measures at fixed
diffusion-weighting with high angular resolution diffusion
imaging (HARDI) including ¢-ball imaging (QBI), spherical
harmonic decomposition/transform approaches, generalized
DTI (GDTI), diffusion orientation transform (DOT), and fiber
orientation estimation using continuous axially symmetric
tensors (FORE-CAST) [6], [7], [16]-[21]. The PDF may also
be estimated through a model fitting on g-space signals such as
the CHARMED model by Assaf er al. [22], [23]. This model
consists of a linear combination of one hindered and several
restricted Gaussian compartments expressed in the g-space. An-
other recent model was proposed by Behrens et al. [24], which
describes complex diffusion as a combination of isotropic and
infinitely narrow ‘“stick” diffusion functions. The final class
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of methods is to try to sample a discrete range of g-space and
exploit the Fourier relationship to estimate the PDF properties
without any assumed model. The g-space formalism was first
introduced by Callaghan [3], and more recently, adaptations
of this approach have been applied to diffusion imaging of the
human brain on clinical scanners [9], [25]-[30]. A principal
advantage of g-space approaches is that the PDF may be es-
timated empirically without prior assumptions; however, the
main disadvantage is that they are inefficient as a large number
of measurements are required to encode g-space.

These g-space approaches also offer the opportunity to char-
acterize diffusion in specific directions. For example, in regions
with crossing WM fibers, the diffusivities in the directions par-
allel and perpendicular to fiber groups may be estimated. How-
ever, when using standard diffusion measurement techniques
(e.g., the diffusion tensor and diffusivity profiles from HARDI),
the estimated apparent diffusivities are based upon the projec-
tions of the PDF, which obscure the information from crossing
WM and can lead to false “peaks” in the diffusivity profiles e.g.,
[5]. The directional data of the PDF provides less blurred infor-
mation about directional tissue microstructure. The relationship
between the diffusion profiles from standard diffusivity mea-
surements and the PDF will be discussed.

The interpretation of PDF image data is somewhat chal-
lenging as it is a 3-D distribution function at each voxel in the
image. In order to distill this information into descriptive maps
of PDF features, several scalar measures have been proposed
including the zero displacement probability [P(0)] and the
mean-squared displacement (MSD) [27]-[29]. Another interest
in these methods has been the estimation and visualization
of WM fiber orientations using colormaps, and renderings of
probability isosurfaces and orientation distribution functions
[22], [23], [25], [26], [29]. This information may be useful for
resolving crossing WM pathways with tractography methods.
One challenge associated with g-space measurements is that
insufficient sampling will lead to aliasing and/or truncation
artifacts that result from the Fourier transform (FT), which
will lead to artifacts in the estimations of these measures [31],
[32]. However, certain properties of the FT may be exploited to
estimate these properties directly from the ¢g-space data. In this
paper, these direct approaches are discussed and evaluated. The
methods are applied to both simulated and real data acquired
using hybrid diffusion imaging (HYDI) techniques, which
sample g-space on concentric spherical shells [29]. Finally, the
effects of g-space SNR and sampling are investigated using
Monte Carlo simulations.

II. THEORY

The relationship between the diffusion PDF and the ¢-space
diffusion signals is a 3-D FT [2], [3]; however, it is possible to
extract many of the PDF measures directly from the g-space sig-
nals without using the FT. For a 2-D image the central section
theorem states that the FT of the line-integral projection (e.g.,
the Radon transform [36]) of the object distribution is equal to
the radial line in the Fourier space at the same angle as the pro-
jection. The Radon transform and the central section theorem
are the foundation of tomographic reconstruction for projection
imaging methods like computed tomography (CT) [33], [35].

In three dimensions, the central section theorem corresponds to
a Fourier relationship between a planar-projection integral of
the object and a radial line in the Fourier domain at the same
angle. Thus, a radial line in g-space corresponds to the FT of the
projection of the PDF at the same angle. Conversely, there is a
Fourier relationship between a radial line in the PDF and the cor-
responding projection of the g-space signals. The radial lines in
either the g-space signal distribution or the displacement-space
PDF are called conditional functions; whereas the projections
of these distributions are referred to as the marginal functions.
Thus, the FT of the conditional function in one domain corre-
sponds to the marginal function in the opposite domain.

A. Zero Displacement Probability (Po)

The Po is the probability density of water molecules that min-
imally diffuse within the diffusion time A. In the brain, WM ex-
hibits the most consistently high Po, which suggests that water
diffusion is more restricted [27]-[29]. As the name indicates, Po
is defined as the probai)ility density of zero displacement for a

given PDF, Po = P(R= 0,A), where R is the diffusion dis-
placement vector. Using the central limit theorem [33], [34], the
PDF signal at the origin may be estimated directly by integrating
over all the signals in g-space

Imax

Po=P(R=0,A)
= Ex(Q)dq “)

—dmax

where Fa(§) is the normalized diffusion signal at the g-space
wave-vector ¢. For nonuniform ¢-space sampling, the summa-
tion needs to be corrected by the sampling density.
B. Mean-Squared Displacement (MSD)

MSD is related to the mean difflésivity (MD) in a voxel via

the Einstein diffusion equation, (R ) = 6A - MD. By defini-
tion, this may be estimated by integrating the PDF weighted b
the squared displacement: MSD = [ [ [ P(R,A)- R*dR.
One may change the orthogonal coordinate to the spherical co-
ordinate and rewrite MSD as

MSD:///P(EA)-E%?’E

= / / / R2P(R,A)Rsin 0dfdpd R

= /ﬁz[//P(RA)ﬁsinf)d&d@]dﬁ

:/EQ[//P(E,A)dA]dﬁ

- / R2P,(R, AR
— Var{P,) (5)

where P,(R,A) = [ [ P(R, A)dA is the averaged probability
on a shell with radius of R. P; could be estimated using 1-D FT
of geometric means of HYDI shells in the g-space. Thus,

MSD & Var{FT;_p[GM(q,..)]} (6)
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Fig. 1. From the central section theorem, the conditional PDF, CPgx. . r(p),
in the displacement space is the 1-D FT of marginal function, MQ, r,, r(qr),
in g-space. PDF, P(Rx, Ry, Rz), is the 3-D FT of g¢-space signals,
E(qx,qy.qz). The line integral of the conditional PDF (gray shadow in
upper-left) is equivalent to the central ordinate value (gray shadow in right)
of the marginal g-space signal function. Central ordinate value of a marginal
function is equal to the disc integration of the signal in the normal plane
through the FT.

where GM denotes the geometric mean and ¢, s denotes the
q-space radius of a shell in a HYDI acquisition. The geometric
mean operation for each shell eliminates the need to compensate
the data by the sampling density.

C. Orientation Distribution Function (ODF)

The orientation distribution function (ODF) is the radial line
integral of the PDF [25], [29]

ODF(0r,¢r) = /P(9R7<PR7/))dP (7
p

where 0 is the rotation angle, ¢ is the azimuthal angle and p
is the length of the displacement vector, R,in spherical coordi-
nates. According to the central section theorem, the conditional
PDF, CPyg ,r(p), is the 1-D FT of the marginal function of
g-space signals with the same orientation M Qg g, r(g-) Where
@ is the radial g-space coordinate. In addition, the line inte-
gral of CPgr or(p), ie., (7), is the central ordinate value of
MQor,,r(g- = 0) (Fig. 1). Equation (7) may be rewritten as

ODF (8, pr) = /P(ﬂR,s@R,p)dp
p

= /CPGR,'PR(/))dp = MQQR:WR (qT = 0)
p

®)

MQgr,,r(gr) is the 3-D Radon transform along the direction
(Or, ¢r), and its central ordinate value, M Qor,,r(g- = 0), is
equal to the integration of the conditional g-space signal, CQ,
in the plane normal to (6g, ¢r)) (Fig. 1). The formula relation-
ships of these PDF measures using both conventional 3-D FT
and new direct approaches are summarized in Table I.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 6, JUNE 2008

TABLE 1
SUMMARY OF EQUATIONS

Measures  Conventional 3D FT  New direct approach
Po Po=P(R=0,A) max
Po= J??A(q)dq
MD MSD= MSD = Var{FT; p[GM (g, ;)1}
= MSDI6A .
”-J-P(R,A) -R*d°R
ODF ODF (6. 9R) ODF (8, 9R) = MQg, ¢, (dr =0).
= |P6p. 0p. where MQgr 4 is the marginal
.[ (Or- PR P¥IP function of the g-space signals
P along direction (6r, ¢r)-
TABLE II
HYDI ¢- SPACE ENCODING SCHEME
. Adg qr AQr b value
Shell  Dir. # (°) (1mm) (1/mm) (sec/mm?)
1 0
1% 3 15.2 15.2 375
2" 12 48° 30.4 15.2 1500
3¢ 12 48° 45.6 15.2 3375
4" 24 42° 60.9 15.2 6000
5" 50 30° 76.0 15.2 9375
Total Mean Max Mean Max
102 40° 76.0 15.2 9375

III. MATERIAL AND METHODS

A. HYDI Acquisition

Hybrid diffusion imaging (HYDI) [29] was performed on
a healthy 23-year-old male volunteer. Informed consent was
obtained in compliance with the guidelines of the Institutional
Review Board. MR images were acquired using a 3 T GE
SIGNA whole body scanner (GE Healthcare, Waukesha, WI)
with an 8-channel receive-only head coil and ASSET parallel
imaging with a reduction factor of 2. The diffusion-weighting
(DW) pulse sequence was a single-shot, spin-echo, echo-planar
imaging (SS-SE-EPI) pulse sequence with diffusion gradient
pulses, dual-echo gradient refocusing to minimize distortions
from eddy currents, and cardiac gating (using a photo-plethys-
mograph) to minimize signal fluctuation from brain pulsations.

The HYDI g¢-space diffusion-encoding scheme is described
in Table II. The maximum b-value was 9375 sec/mm? with a
maximum DW gradient of 40 mT/m and gradient duration (¢)
and separation (A) of 45 and 56 ms, respectively. This sam-
pling scheme corresponded to Ag, = 15.2 mm~! and max-
imum g= 76.0 mm~"! (Table II). The field-of-view (FOVg =
(Aq,)~1') and the resolution (AR = (2max ¢,)~!) of the dis-
placement density function of water molecular were 65.8 and
6.6 pm, respectively. Other imaging parameters included an
in-plane voxel size = 2 mm (FOV = 25.6 cm and matrix
size = 128 x 128), 30 slices with slice thickness = 3 mm
covering most of the cerebrum, TE/TR = 122/11700 ms and
a total scanning time of approximately 30 min. Signal-to-noise
ratio (SNR) of each HYDI shell was calculated, as described in
[29]. The mean and peak SNR of WM at the highest b-value
were 2.85 £0.71 and 8.33 £2.59, respectively.
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B. HYDI Data Processing

First, to minimized overestimation of signals near the noise
floor, g-space signals were set to zero if smaller than 2 times
of the mean signal in air [22], [23], [27], [28]. PDF measures
including Po, MSD, and ODF were computed using (4), (6),
and (8) directly from whole g-space signals without the 3-D FT.
Although no regridding was required in these computations,
correction of the sampling density was performed. The density
weighting w; of each g-space sample i was proportional to the
relative volume A; that a sample occupies w; = A;/>, A;.
The encoding directions for each shell (derived by an elec-
trostatic repulsion algorithm) were uniformly distributed on
a sphere. Thus, the samples on a single shell were assumed
to have the same weighting A, = A, = 4nq¢?,/N, and
>, A =, Amg? ., where g, is the g-space radius of a shell
and N, is the shell number (the index starting from O at the
center). The density weighting may be rewritten as

wy = q2,/ (Ns > ng) : ®)

For the purpose of comparison, “conventional” PDF mea-
sures were computed from the PDF after 3-D FT [29]. In that
approach, the nonuniform g-space signals were first regridded
onto a 9 X 9 x 9 Cartesian lattice using a bilinear interpolation
algorithm (MATLAB function “griddatan”) [37]. After sample
interpolation, the PDF of the water diffusion displacement was
calculated using 3-D FT of the normalized g-space signals. All
data were processed using in-house MATLAB codes.

C. Computer Simulations

A Monte Carlo noise simulation was performed to investigate
the effect of SNR on the Po and MSD measurements for both the
conventional (3-D FT) and the new computation methods using
the HYDI scheme in Table II. Six SNR levels (i.e., 10, 20, 30, 40,
50, and 100) were simulated by adding Gaussian random noise
in quadrature to the diffusion-weighted signals of numerical
phantoms [38]. Two simple isotropic diffusion numerical phan-
toms were used—fast diffusivity (D = 1.15 x 1073 mm?/s)
and slow diffusivity (D = 0.45 x 10~3 mm?/s). One hundred
random trials were simulated for each SNR level.

The effects of g-space truncation were also investigated
using the same simulated isotropic diffusion phantoms. Five
maximum b-values (i.e., 2800, 4375, 6300, 8575, and 11200
s/mm?) were studied without adding noise. For each maximum
b-value, the sampling intervals of HYDI schemes including the
radial sampling interval, Ag,, and azimuthal sampling interval
qr * Aqg were set at the Nyquist limit of the fast diffusivity,
ie., 10 mm~! [31].

Finally, the effects of the sampling interval (limited shell data)
were also investigated with increasing both radial and azimuthal
sampling interval (Aq) from 5, 10, 15, 18, 22.5 to 30 mm~1!.
Each Aq simulation had the same maximum b value of 14200
s/mm?, which is adequate to avoid truncation effects, especially
for slow diffusion. Therefore, as the sampling interval increases,
the HYDI shell number decreases from 18, 9, 6, 5, 4 to 3. No
noise was added and the same isotropic numerical phantoms
were used in this simulation.

Fig. 2. Maps of displacement PDF measures using the new direct method
(upper row) and conventional 3-D FT approach (bottom row). (a) Po maps. (b)
MD (MSD/6A), maps in units of 10=2 mm?/s.

IV. RESULTS

A. In Vivo Brain HYDI Data

Maps of the PDF measures using the new and conventional
computation methods are shown in the upper and bottom rows
of Fig. 2, respectively. Both Po maps show high tissue con-
trast between WM and GM, though the conventional Po map
has slightly lower intensity in WM [Fig. 2(a)]. The difference in
Po maps appears to be caused by the g-space regridding method
(Matlab function, griddatan) prior to FFT. The MD (MSD/6A)
map estimated using conventional 3-D FT method was higher
due to the truncation of slow diffusing components at high g.
This artifact may be minimized by increasing the g-space sam-
pling range (i.e., the maximum b-value) at the expense of scan-
ning time. Similar results are shown in the computer simulation
below.

ODF profiles estimated using both the normal disc integral
(equivalent to the central ordinate value of the 3-D Radon trans-
form) of g-space signals and the conventional radial integral of
the PDF are shown in Fig. 3 at two anatomical locations, pre-
frontal WM [Fig. 3(a)] and the splenium of the corpus callosum
[Fig. 3(b)]. The normalized ODF profiles using the new com-
putation method appear sharper with fewer spikes and narrower
waists [Fig. 3(b)].

B. Simulations of SNR, Truncation, and Sampling Interval
Effects

The effects of SNR on the Po and MSD measurements are
shown in Fig. 4. Both Po and MD are overestimated with high
variances at low SNR levels. Estimates of Po with the new direct
computation method showed less variance although the values
were slightly overestimated for the slow diffusivity model. The
new method (MSD) has less overestimation of MD than the



862

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 6, JUNE 2008

L X X N A R R A A A R B B A B A K R NFRSLIILILIL LISy
L X X A0 B A R A K X R R K K LA X A A AR A AR X R R R R
L X A AN A E L X X N AR L d F AN NAEEEEE R X X 2 & K
Somw L POl PSS NNG O LA X F AN NI AE X X & X X X
LY & S8 B I S A A X X N R R X 2 L X & A A AT X 2 % X X X 4
WCRSGSPPIII LY s b O LY K X X AEEE RN R X X X X X J
AR E N X N EIEEEEEEEE X XN X J LA X N KX NI EE X X X X X X J
\ A EFA L L ENENIEMNE R R XX X ] \ A AR X XENMNEBIEMIEMEMERE 2 2 X X X J
VRTINS SYIYANNNNNSH SSOSYSSYS L BB EEE ERENEBEBEEMNMESY Y X XNXYX ]
VLY R XX VSNV NANN NN s ODF L LB EAE X NNEEBRYWES S LT XX X J
ss\tn\tnos\\\\\\nurzp LA A BB BN NENRNENBERSS SN X XL
5\0!'!::0‘5\\\\\\u—l*—— S99 0 2043808 0\ \N\\\ ey
SV SIANNNNNNS NSO 0822222V ANNANNANNNN N
®HH LI YISANNNSNNNNSNSSS ® %582V SSANNNNNNSRNSDNYNS
[ % % S T T T T U W N WO L T VL T N O SR N B4+ L LRSS ENNSNY
L 20 L L T T T T O W T T BN NN N W W N SR SR N L LT I T T R T B B NN R N BN B W Y Y
LA RN EEEREE AR ERE R R L LA A BN RN RN N B BRNENE R L)
LS YA TR T T I I 2 B R B B NN B R NN qmws\\\\\\!0\$§0§§§§0§~

YT B N B BN N N N NN __*\\\\\\\\tooossoncsss
@)\\\\\tsooos\\\\\\\ LA NN IR X R R R LR NN

P @ GPoccccccccoteotor PP G
P oF oF 00 00 oo o= oo o0 S0 Se o B ® @
S O° 0P P oS = we av Se e Ta % L O O
P P OO o o e ww ee e T T Vg O O G
P P P S S e en an e e Ve Vg Vg Y O
O P P S AP S a aw e e Vg O O O O
OO SO SO PP S s e am e W Vg O Oy O Y
O 9P P P o av o o e Wa Vg Ny G Y G

0 00 00 oo A N |§ ® % %a 0y O Y

(b)

pODF

u'v‘u'u'--—----\\\\\l

07 0 o o S = aw wm (e Ve Ve Vg Uy Y O
0P oF oF oF ofF o wm e Ve Ve Ve Ve U %
07 o° oF o5 o o0 b WA W e Do Pe Vq Vg Y

@ @ 60 00 o0 oo coco 0o 0o o > WP o Hp
@ & & 0 o0 oo oo oo %0 %0 %o P W O @
oF 0F 0F 0P o0 oo oo o e S Se g g M @
0P 0° 0F o© o0 oo v oo Sp By Gy Gy G G G
O® 90 0P 0° o0 oo oc e oo Bg U Yy Yy { §
0® 00 900 00 o° oo so ve Se Bg S Uy Yy Yy §,
0° 9P 9° 0° o° 2= oc oo|Se g Sq Og U Uy &
0P 0° 0° 0° o oo oo cu|ae Sg Sg e B Oy O
0P 0° 0° 9P 5° oo < W e S S 9g O G

QODF o6 o0 00 00 or o a0 § | W o o o¢ o, &,
PO PP PO IR Dren N\ —PrdRersrsdt N\

Fig. 3. ODF profiles of a human subject in (a) prefrontal WM, and (b) the splenium of the corpus callosum (b). Left column (pODF) was processed using the
conventional 3-D FT method, i.e., the radial integral of the displacement PDF. Right column (qODF) was processed using the new direct method.

conventional FT method (MD=MSD/6A). The estimation vari-
ances are similar for both methods in MD.

The g-space truncation effects are described by the plots in
Fig. 5. Obviously, the slow diffusivity signal is most sensitive
to g-space truncation with underestimation of Po and overes-
timation of MSD. The estimation biases caused by truncation
are less severe for new computation methods. For the human
brain study, the maximum b value was 9375 s/mm? (Table II)
where the MD of slow diffusivity in WM should be more accu-
rate using the new method.

The effects of the sampling interval Aq (limited shell
number) are shown in Fig. 6. As Agq is increased, both Po
and MD are overestimated. For estimation of Po, the new
computation method introduces larger errors with increasing
Agq. However, for MD estimation, it performs better than
the conventional FT method. In the human brain study,
Agq, = 15.2 mm~!, which would suggest that both Po and MD
will be slightly overestimated from their true values.

V. DISCUSSION

The main goal of this research is to develop a flexible, accu-
rate, and efficient method for characterizing complex diffusion

in the human brain. In this study, we developed a set of effi-
cient computational methods to estimate measures of the diffu-
sion PDF directly in g-space without 3-D FT. These methods
were applied to data using HYDI, which is a non-Cartesian
g-space sampling strategy that consists of concentric spherical
shells of constant |¢| radii [29]. The HYDI sampling strategy is
similar to that used by the CHARMED model [22], [23] (con-
centric g-space spheres with increasing sample number with ¢
radius). The main differences between the approaches are that
CHARMED is model-based, whereas HYDI uses descriptive
statistics. The non-Cartesian sampling of HYDI provides flex-
ibility in the data analyses [29]. For example, the inner shells
may be used to reconstruct diffusion tensor images, the out-
ermost shell may be used for HARDI or ¢-ball imaging pro-
cessing, and all shells may be used to estimate properties of the
PDF [29]. The new estimation methods for Po and MD may
easily be adapted to other g-space sampling schemes. The ap-
plication to Cartesian g-space sampling (i.e., diffusion spectrum
imaging) is trivial since the sampling density in g-space is uni-
form and measurements in the three orthogonal directions are
available. Furthermore, g-space interpolation errors would not
be present for Cartesian imaging. While we did address some
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Fig. 4. Monte Carlo simulation investigating the effects of noise on estimates of
fast and slow isotropic diffusion distributions with D = 1.15 and 0.45 s/mm?,
respectively. (a) Po versus SNR. (b) MD (MD = MSD/6A) versus SNR.
Errorbars denote one standard deviation across 100 trials.

of the sampling issues in our simulations, it is possible that cer-
tain g-space sampling schemes might make the estimated values
either more or less accurate.

The new computation approach skips two steps used in the
original HYDI paper, the regridding interpolation to Cartesian
g-space and the 3-D FFT. Thus, it is more computationally ef-
ficient, particularly for the Po and MSD estimates. The compu-
tations are performed separately for each voxel. In our experi-
ence, the processing time for regridding interpolation and 3-D
FFT of whole brain HYDI datasets with resultant image matrix
of 256 x 256 and 30 slices using Matlab require about 120 h
using a 3-GHz Pentium III server with a RAM size of 2 Gb. It
is also not clear that the regridding algorithm, a bilinear inter-
polation (MATLAB built-in function “griddatan”), used in the
original HYDI study [29] is optimum. The proposed estimation
methods do not require g-space regridding.

The effects of g-space SNR and sampling properties (interval
and extent) on Po and MD estimates were investigated using
simulations. As a function of SNR, the new estimation methods
were equally or more accurate than the 3-D FT method. In the
SNR range of most g-space studies on clinical scanners (SNR
~ 20-30 for this study), both Po and MD were overestimated
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Fig. 5. Computer simulation of g-space truncation effects on PDF measures.
Diffusion models were simple fast and slow isotropic diffusion distributions
with D = 1.15 and 0.45 s/mm?, respectively. No noise was added and both
radial and azimuthal sampling intervals was set to be Ag = 10 mm~*. (a) Po
versus maximum b-value. (b) (MD = MSD/6A) versus maximum b-value.

(Fig. 4); however, the bias was less for the new method than
the 3-D FT approach. The new approach also appears to be less
sensitive to the maximum diffusion-weighting (g-space extent)
as shown in Fig. 5. The maximum b-value in this study was
9375s/mm?, which shows minimal bias effects for these diffu-
sivities with the new method. However, the new method appears
to be more sensitive to the sampling interval, particularly for es-
timating Po. In this study, the g-space sampling interval between
shells was 15.2 mm~!, which will cause Po to be overestimated
although the relative contrast between fast and slow diffusion is
relatively unaffected.

The standard diffusion tensor model as well as the original
implementations of HARDI methods [6], [7] are derived from
the marginal PDF signals. One limitation of DTT and HARDI
representations is that the peaks in the diffusivity profiles do
not always correspond to the WM fiber direction, particularly
in regions of crossing WM fibers. With constrained models, it
may be possible to estimate directional diffusivity information
of individual fiber components [6], [7], [17]-[20], [24]. How-
ever, modeling depends on the prior knowledge of the diffusion
behavior in complex tissue structures. If the assumptions are in-
correct, then the estimated fiber properties may be misleading.
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Recently, HARDI approaches like ¢g-ball imaging (QBI) ap-
proaches have been developed to estimate the fiber ODF [16],
[30]. QBI uses the Funk—Radon transform, which is a circle in-
tegral about the equator normal to the ODF direction. For full
g-space imaging (also called diffusion spectrum imaging), the
ODF may be estimated by the radial integral of the displacement
PDF [26]. In this study, the 3-D Radon transform was used to
estimate the ODF by disc integration in the plane normal to the
direction of interest. This new approach yielded sharper ODF
profiles as evidenced by Fig. 3.

In this study, we used two scalar measures (Po and MSD) to
describe properties of the PDF. These measures are rotationally
invariant. The forms of the (4), (6) are independent of the coor-
dinate axes. Po is a rotationally invariant measure because the
3-D volume integration in g-space (new computation method)
and the central ordinate value of the displacement space (con-
ventional method) are independent of the coordinates. In the
MSD calculation, the geometric mean, which was averaged over
all directions on a HYDI shell, depends only on the diffusion
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Fig. 7. (a) Map of the QIV, a pseudo-diffusivity measure. Maps of (b) axial
and (c) radial diffusivities estimated using QIV on the conditional functions of
g-space signals (CQ) along the axial and radial directions of the ODF. Color bar
units are 1073 mm?/s.

weighting. The ODF profiles describe intrinsic fiber orienta-
tions. Thus, if the coordinates are rotated with respect to the
object, the ODF will similarly rotate, but otherwise be identical.

We also explored a new pseudo-diffusivity measure called
the g-space inverse-variance (QIV) in Fig. 7(a). The directional
information was compressed by taking the geometric mean of
q-space signals of all directions on a HYDI shell (similar to the
MSD estimation method used here). The QIV was defined as the
inverse-variance of g-signal geometric means. One advantage of
this approach is that it does not require any FTs. In the case of
Gaussian diffusion, the QIV should be equivalent to the MSD,
since the variances in g-space and the displacement PDF should
be inversely related. However, for non-Gaussian diffusion, the
QIV will be similar, but not equivalent to the MSD. This is the
case particularly in WM where the QIV is less than GM whereas
the MSD measures for both are similar (Fig. 2). The decreased
QIV in WM is caused by the slow diffusion component in WM
which is weighted more heavily in the QIV measure. Although
the QIV is not equivalent to the MSD, it is a valid measure of
diffusion behavior.

The QIV approach may also be exploited to estimate other
diffusion features. One example is the estimation of the axial
(parallel) and radial (perpendicular) diffusivities from ¢-space
data. Recent studies in animal models have suggested that the
axial diffusivity of the diffusion tensor is related to axonal in-
tegrity whereas the radial diffusivity is related to myelination
[39], [40]. However, these measures will be erroneous in areas
of crossing WM. In this case, the axial and radial diffusion
may be better characterized using g-space measures. We also
explored using the QIV method for estimating the radial and
axial diffusivities. The axial and radial directions were defined
as the directions of the maximum and the minimum ODF values
[(8)], respectively. The radial direction was constrained on the
plane perpendicular to the axial direction. The diffusivities in
the specific directions were estimated using inverse variance of
the g-space conditional function CQ in the specific directions.
Maps of axial and radial diffusivities are shown in Fig. 7(b) and
(c), respectively. The WM and GM have similar axial diffusivi-
ties of about 0.9 x 10~ 3mm?/s [Fig. 7(b)]. GM has similar radial
and axial diffusivities, whereas the WM has much smaller radial
diffusivities of roughly 0.2x, 10~*mm?/s [Fig. 7(c)].

Although promising and interesting, clinical applications of
g-space imaging methods like HYDI have not been widely ex-
plored. Although recent studies have suggested that Po and MD
may be more sensitive to brain pathology [40], more studies are
necessary to determine whether these methods offer clear ad-
vantages over standard diffusion tensor imaging.
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VI. CONCLUSION

In this study, we described the relationship of conditional
and marginal functions between ¢-space and the displacement
space. Based on this relationship and specific FT properties, we
introduced a novel computation approach for PDF measures cal-
culated directly from g-space signals, and demonstrated using
both computer simulations and human brain experiments with
hybrid diffusion imaging. This approach bypasses the regrid-
ding interpolation and 3-D FT process in HYDI data analysis.
Results of the new approach, including the zero displacement
probability and mean-squared displacement were comparable
with the conventional calculation from PDF. Computer simula-
tions showed that the new method is less sensitive to noise and
g-space truncation effects. This approach may be expanded to
other Cartesian or non-Cartesian g-space acquisition methods
such as DSI and CHARMED.
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