Pybids: Python tools for manipulation and analysis of BIDS datasets

TClI Yar koni 1., Alejandro de la Vega', Elizabeth DuPre2, Oscar Esteban3, Yaroslav O. Halchenko#, Michael Hanke5, Valerie Hayot-Sasson®, Alexander Ivanov7, Gregory Kiar?,
Christopher Markiewicz3, Quinten McNamara!, Dmitry Petrov®, Taylor Salo9, Dylan Nielson'©, Jean-Baptiste Poline2, Russell Poldrack3, Krzysztof Gorgolewski3

"University of Texas at Austin, 2McGill University, 3Stanford University, 4Dartmouth College, and several other fine institutions

Introduction

* Efforts to standardize the representation of
neuroimaging datasets have recently
converged on the Brain Imaging Data
Structure (BIDS; Gorgolewski et al., 2016)--a
relatively simple specification that has already
been adopted by hundreds of researchers
around the world

Where can I getit?

https://github.com/incf/pybids

[=] 3 [
[=]

Hipsters please point your mobile
devices at the magic square on the
right

About pybids

How do I use it?

Initialize a BIDS project

from bids import BIDSLayout
layout = BIDSLayout(bids dir)

Simple but flexible querying

layout.get subjects()

[€01°, ‘@2°, @©3°, ‘04’, .]

* To maximize the utility of this common
standard, it is important to develop easy-to-

.use tOOI,S that. facilitate pr(.)gram.matlc * Makes it much easier to work with BIDS-
interaction with, and manipulation of, BIDS- compliant datasets in Python

compliant datasets. Querying module ("grabbids") makes it easy to
construct and execute complex queries that
might otherwise require extensive scripting.

* Loading/extraction of all variables (task events,
physiological recordings, behavioral measures,
etc.) found in BIDS projects--optionally
returned as pandas DataFrames

* A working implementation of the forthcoming

BIDS-Model specification, which provides a
simple, machine-readable way to represent

complex statistical models that can potentially
be fitted using a variety of fMRI analysis
packages

M@th()ds e Partial auto-generation of methods sections

e Hundreds dozens three other features

What does it do?

layout.get(type="bold', subject='04", return_ type='file’)

* Here we describe a new open-source Python

package—"pybids”--that provides powerful
tools for querying BIDS datasets and
constructing complex statistical analysis
pipelines.

['sub-04 task-mixedgamblestask run-01 bold.nii.gz’,
'sub-04_ task-mixedgamblestask run-02 bold.nii.gz’, ..]

target = 'sub-04 ses-1 task-rest run-1 bold.nii.gz’
layout.get metadata(target)

{'EchoTime': 0.017, 'EffectiveEchoSpacing': 0.0003, 'PhaseEncodingDirection’:
'j-', 'RepetitionTime': 3.0, ..}

Easy access to variables in BIDS projects

events = layout.get collections(level="run')
events.to df()

We wrote a bunch of code

index duration task onset run subject PTval RT gain loss parametric gain respcat respnum response trial_type

0 1 3 mixedgamblestask 0.0 1 01 5.15 0.000 20.0 15.0 -0.139 -1.0 0.0 hello parametric gain

1 49 3 mixedgamblestask 4.0 1 01 6.12 1.793 18.0 12.0 -0.189 1.0 2.0 no parametric gain

2 97 3 mixedgamblestask 8.0 1 01 -485 1637 10.0 15.0 -0.389 0.0 3.0 hello parametric gain

\ ;s / hy Sh()uld I use it? 3 193 3 mixedgamblestask 18.0 1 01 18.16 1316 34.0 16.0 0.211 1.0 1.0 yes parametric gain
4 241 3 mixedgamblestask 24.0 1 01 13.05 1670 180 5.0 -0.189 1.0 1.0 NaN parametric gain

E [} [J [} [J [}
AWESOME e S—-— asy Model specification and design matrix construction
o Pybids supports the BIDS-Model specification; here’s an example JSON file specifying a simple first-
X level model:
Unicomns ; \ Undergraduaté\ .
/ lce cream psychology {"name" :"my model","blocks":[{"name":"run","level"”:"run","transformations™:
! } : [{"name" :"scale","input" :"RT"},{"name" :"factor","input”:"trial type"}],
YoeemmTTTTTTA g "model” :{"variables":["parametric gain", "parametric loss","RT"]},
pybids ! auto_contrasts”:true}]}

We can pass this specification directly to pybids, and have it easily construct design matrices, contrast
specifications, etc.—potentially after applying complex transformations to the variables included in
the design matrix.

L
-~
" -~
- -
- N
““““““““““
- T — -

from bids import Analysis
analysis = Analysis(layout, model.json)

analysis.setup()

~
\\\ "'
- ae®
- ———

Productive

analysis[‘run’'].get design matrix(subject="01", run=1)

task type subject modality run PTval RT gain loss parametric gain respcat respnum
0 mixedgamblestask bold 01 func 1 5.15 -3.530433 20.0 15.0 -0.139 -1.0 0.0
1 mixedgamblestask bold 01 func 1 5.15 -3.530433 20.0 15.0 -0.139 -1.0 0.0
OVC[’ﬂ()W Space f()[’ comment b()X bel()W 2 mixedgamblestask bold 01 func 1 515 -3.530433 20.0 15.0 0139 -1.0 0.0
3 mixedgamblestask bold 01 func 1 5.15 -3.530433 20.0 15.0 -0.139 -1.0 0.0
4 mixedgamblestask bold 01 func 1 5.15 -3.530433 20.0 15.0 -0.139 -1.0 0.0
And more...

There are +heusards Rerdreds at least three other things you can do with pybids. More information
at https://github.com/incf/pybids

Comments, suggestions, requests, sketches, haiku, and other expressions of [dis]satisfaction go in this box

...or report what ails you at https://github.com/incf/pybids/issues

Supported by NIH award RO1IMH109682
@ For further information or reprints (why???), email tyarkoni@utexas.edu

TEXAS

