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Abstract
EEG/fMRI fusion algorithms attempt to construct a spatiotemporal estimate of neu-
ronal activity using data gathered from both fMRI and EEG modalities.

Recent advances in neuroimaging technologies like msMRI [1] do not reduce impor-
tance of the research attempts to devise plausible methodology to combine different
functional brain imaging techniques as fMRI and EEG, which often bear coherent
and complementary spatio-temporal information [2].
In the most common framework for posing this problem, which we follow, the result
of such fusion constitutes a set of underlying activities from which the data observed
in both modalities can be re-constructed with minimal error using adequate forward
models for both modalities.
Although squared-error (l2 norm) minimization leads to the best estimator in case
of Gaussian data noise, absolute error (l1 norm) minimization can lead to a more
robust solution in the presence of outliers. This fact lead us to develop 2 somewhat
complementary algorithms to obtain desirable solution for l1 and l2 error norms. To
solve l1 norm problem we present objective function in a form amendable to be mini-
mized by efficient sparse LP-solver which gives us the unique solution. This method
makes a number of simplifying assumptions which convert the EEG/fMRI integra-
tion problem into optimization of a convex function. l2 norm solution is obtained
through the steepest gradient-descent method.
We present results on both artificial data with realistic parametric structure and pre-
liminary analysis of a difficult challenge benchmark for fusion methods more gen-
erally.

Introduction to Fusion
Fusion algorithms are employed in an attempt to construct a spatio-temporal esti-
mate of neuronal activity using data gathered from multiple functional brain imag-
ing modalities. Here, the estimate is built by placing a dipole in each voxel of
the modality with highest spatial resolution, and estimating the time course of each
dipole without constraining dipoles’ orientation. The solution space thus consists
of a matrix S of dimensionality 3N×T , which actually consists of 3 N×T matri-
ces. Each such sub-matrix corresponds to the projection of the dipole to the specific
axis [3]:

Modality Matrix Size Estimate
EEG E M×T Ê = AS
fMRI F N×U F̂ = S̃B

Forward EEG/fMRI equations, where S̃ is a N×T matrix which holds the dipoles
strengths without orientation information and s̃i j = ||(s(x)
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General Problem Formulation
The objective is to reconstruct Ê and F̂ so as to minimize ∆E = Ê−E and ∆F = F̂−F
using forward models with spatial filter A for EEG and temporal filter B for fMRI.
Thus, introducing trade-off parameter α and regularization parameter β objective
function to minimize can be presented as

C = ‖∆E‖l +α‖∆F‖l +βc(S) (1)

where l is the norm to characterize the goodness of fit and c(S) can incorporate
other constraints as the smoothness of the solution in time or in space, minimal
norm requirement etc.

l2 Error – Gradient Descent
Taking derivative on (1) in case of l = 2 leads to a simple gradient descent rule

Sτ+1 = Sτ−η
∂E(S)

∂S
,where η is a learning rate. (2)
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where ? operation corresponds to element-wise product of two matrices.

l1 Error Minimization - LP Minimization
Using defined abbreviations we formulate an initial LP problem as follows

Ê+∆E = E Constraints (5)
F̂+∆F = F (6)

s̃i j ≥ 0 Region (7)
C = ‖∆E‖1 +α‖∆F‖1 Objective , (8)

where α is used to check different trade-offs between two modalities as well as to
normalize their influence in the optimization criteria.

LP transformations
First we redefine each |x|, which are present in computation of C (8) and s̃i j (10), in a
form suitable for LP through usage of slack variables x+ and x−. This transformation
leads to a side effect - minimization of the sum of absolute values of |si j|.
Secondly we approximate vector norm e = ||m|| to be used within an LP framework.
Our solution is to note that the min(·, ·) and modulus | · | functions can be used freely
in a LP and then reduced to canonical form using standard transformations. Let {Ri}
be a set of rotation matrices. To approximate ||m|| we let

ei = ||Rim||1 e = min
i

ei (9)

where || · ||1 denotes the l1 norm. These can simply be added to the linear program-
ming problem, enforcing the relation e ≈ ||m||.

Final LP form
We encode the definition of S̃ into LP constraints matrix through presenting it as

S̃ = l(|Sx|, |Sy|, |Sz|), (10)

where l(. . .) is a linear formulation to approximate l2 norm.
To represent (5) and (6) in a form suitable for LP we use Kronecker product ⊗
obtaining the constraints and the objective function in an extended canonical form
for LPs,

(A⊗ IT)S̄+∆Ē = Ē (11)

(IT ⊗BT) ¯̃S+∆F̄ = F̄ (12)
S̃− l(|Sx|, |Sy|, |Sz|) = 0 (13)

¯̃S ≥ 0 (14)
C = ||∆E||1 +α||∆F||1 +β||S||1 , (15)

where IZ is the identity matrix of size Z×Z.

Simulation Data
To check the method artificial data was created. Brain volume is simulated as a half-
sphere with 9 voxels in diameter, which gives us 132 voxels total to be considered.
Simple single sphere model was used to generate gain matrix for EEG 11 sensors
distributed across the half-sphere surface. We’ve generated random activation map S
consisting of 5 voxels firing within 600ms interval after t0=2 sec from the beginning
of the timecourse ( 1 voxel per each 0ms, 200ms, 400ms and 2 voxels at 600ms after
t0) with the same amplitude but in different locations and with arbitrary orientation.
Using this map clean EEG and fMRI were constructed through the forward equa-
tions. EEG was sampled at 10sps and fMRI at 1sps, so EEG time resolution in the
experiment was 10 times higher than slow fMRI.
Additive noise was used to corrupt EEG signal: Gaussian noise with SNR=-5dB,
which due to sparsity constituted equivalently %RMS≈23%, where

%RMS =
σnoise

max(x)
×100% (16)

for clean signal x. SNR for EEG was fixed across all experiments. An fMRI signal
was also corrupted by additive Gaussian noise with variable SNR to do some noise
sensitivity analysis (for fMRI SNR 2dB ≈ 35% %RMS).

Data Conditioning
Before analysis, both data sets (EEG E and fMRI F) and corresponding matrices (A
and B) were normalized by estimated noise standard deviation in order to properly
scale error terms as well as to remove difference between units of EEG and fMRI.
Then weights in error terms were used to remove dimensionality effect by assigning
α = MT/NU .
As multiple tests with different SNR levels have shown, best estimates of activa-
tions were achieved when β = 1

3NT σS
, where σS is standard deviation of simulated

activation map. It can’t be known for real data but we’re speculating here by using
artificial data. Robust method to estimate β is the next goal to achieve in future
research.

Results
Obtained solutions for fMRI SNR > 3 dB returned all 5 original activations as 5
highest obtained activations for duration of the experiment with ≈ 50% of energy
spread through the rest of the volume. Lowering SNR down to 1dB lead to a stable
detection of 3 out of 5 activations.

Real Data

The Finger Sequence Benchmark
Most benchmarks for modality fusion often do not rule out solutions using only
one modality. In order to create a true test of any fusion algorithm we propose to
recover a finger tapping sequence in the M1 Hand region around central sulcus. To
the extent that digit somatopy can be spatially resolved by statistical methods [4] or
various classifiers, the problem still poses a severe challenge for modalities such as
BOLD or EEG alone. Recovering finger tapping sequences in faster time resolutions
(we used 12 sec, 4 sec and 1 sec) must require more cross signal fusion exploitation
from temporally and spatially rich signals. Solutions to this type of problem are
nontrivial for any kind of fusion approach.

Results
We report initial attempts using suggested benchmark where subjects finger tapped
in fixed sequences at different time resolutions between digits. Digits were taken
against a REST block and in contrast to all pair wise combinations (10). We precon-
ditioned EEG using ICA and found components that were associated with design
frequencies so to eliminate unrelated activity from the fusion process.
To label voxel somatopy we used neural network classifiers, which are known to
generate stable topographic mappings in cases of non-linear decision surfaces.

Discussion and Future Work
In the future we plan to apply proposed methods to the challenge benchmark and
show how signal fusion can produce reliable estimates of the rank order sequence of
digits in time.

NN Localization vs GLM: Neuroimaging data patterns can often require models
that are sensitive to higher complexity then linear frameworks such as GLM can pro-
vide. Neural networks can be used to identify voxel function even when prospective
decision surfaces are graded and nonlinear [5]. Networks that are overparameter-
ized also provide for simple filtering as well as smoothing of target clustered inputs.
Most useful in the present hand somatopy problem is their ability to separate near
overlapping non-convex regions and to smooth falloff from multiple maxima.

Modalities Tradeoff: The presence of the weight factors α and β and necessity
to scale both modalities to find correspondence between their signal levels make
proposed method less attractive while no efficient and robust method for such pa-
rameters estimation is suggested. Iterative re-estimation can be used as the one of
possible approaches to accommodate useful variance of both modalities during fu-
sion process [6].

fMRI Resolution: Although fMRI spatial resolution is quite high in comparison to
localization given by EEG/MEG inverse solutions, agglomerating haemodynamic
nature of the BOLD signal makes it quite hard to discriminate activations in the
neighboring voxels. Increased spatial resolution due to selective slice acquisition
should improve the results in case when ROI is well localized, such as in the sug-
gested benchmark experiment.

BOLD Variability: HRF filters must be estimated for each voxel to account for
variability of BOLD dynamics within the brain.
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