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Graphical Models and Brain
Interactivity

Graphical linear statistical modeling, such as path analysis
and structural equation modeling (Jennings, McIntosh, Ka-
pur,1998; McIntosh and Gonzalez-Lima, 1994), have been
used with some success to investigate the interactivity of
brain areas that are recruited during a specific cognitive or
perceptual task. As the neuroimaging field matures, theo-
ries of cognitive neuroscience naturally involve hypothesis
about interactions between brain areas, hence our ability to
model underlying networks depends critically on detecting
larger data structures (e.g. networks) than local regions of
interest.
Nonetheless, past work in network detection has had the fol-
lowing problems:

1. Confirmatory not Exploratory: given high uncertainty and
noise in Neuroimaging data, Exploratory methods may be
more desirable

2. Lack of sensitivity in alternative hypotheses (as graph space
increases; see table)

3. Interpreting Graph interactivity despite slowness of hemo-
dynamic response

4. Greedy Search methods that are slow and can be biased
(Bullmore et al, 1999).

BAD NEWS: GRAPH space increases faster than exponen-
tial. Graphs of interest in Cognitive Neuroscience: Oriented
(direction) Labeled (unique) (ROI) pairwise acyclic (covari-
ance): Number of graphs = 3(n?n−1)/2 where edges can be
{+1,0,-1} hence:

Number of Nodes Number of Graphs
2 3
3 27
4 729
5 59049
6 143448907

**7 10460353203
8 2287679000000

Six nodes produces a number of graphs takes 1 day on a 14 node OPTERON Cluster

where 1M graphs are searched per node. Seven ** Nodes would take approximately 2

years, while 8 Nodes would take roughly 4300 years (43 centuries) assuming linear

computational time with graph number. This is particularly disturbing for Cognitive

Neuroscience, in which theories of working memory (Baddely, 1987), meta-memory

(Johnson, 2004) category learning (Poldrack & Gluck 2002), language processing, and

executive control and many other cognitive or perceptual process may involve a small

number of areas of the brain that could easily exceed SEVEN ROIs.

New methods for Graphical Modeling of
Brain Interactivity
This new approach is based on a simple observation that most
of these graphs up to SEVEN are relatively easy to EXHAUS-
TIVELY search. In those cases we do the following:
1 Nodes of the graphs are first located using GLM or some other noise abatement meth-

ods

2 Region location-clustering in individuals to maximize brain interactivity interpretation
and Clustering for region analysis (see Poline et al, 2004, for K-Means region map-
ping).

3 Determine time series per ROI. Three possibilities compared here:

• m by m by m smoothed voxels over time (reduce noise, increase signal consistency)

• EIGEN-Time Series: do PCA on V by V voxel space over time producing an
eigenvector over time for each ROI

• MDS-Time Series: do MDS on V by V voxel space computing distances over time
points of each time series from the all others (more similarity based-less linear)

4 Project Voxels in reduced Projection space (5x5x5 smoothing)-drop 10-20% of vari-
ance (reducing noise and increasing correlation structure in time series). Pick dimen-
sions with highest variance from MDS.

5 Compute COVARIANCE/CORRELATION between EIGEN-Time Series or MDS
Time Series (note in PCA case composite score may not be invariant under rotation)

6 EXHAUSTIVE SEARCH. Fit ALL N-node ORIENTED LABELED graphs to
covariance-LISREL. However we do not fit any saturated graphs, i.e. those that are
guaranteed to be overparameterized

7 Sort and find distribution of goodness of fit over all graphs; Should be SINGLE peaked
and + skewed (see below)

8 Select best graph (AIC), or if there is a cluster of equivalent graphs pick composite of
best graph (voting).
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Study

For graphs larger (some) N (based on today’s computational
resources, see table before) use focused sampling or Monte
Carlo Markov Chain.
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ROI Timeseries for PCA, MDS
Graphs we can Exhaustively Search
Working Memory 5 (59049 Graphs) Nodes

Bullmore et al (2000) and Working Memory Graphs: Di-
rected Search in Graph Space: Greedy method, poor trade-
off in breadth vs depth. Comparison of Bullmore et al with
Exhaustive Search (59049) Best graph in terms of AIC or P
is neither close to graph (II) found by Bullmore nor close to
theoretical graph (I). VEC: ventral extrastriate cortex; PFC:
prefrontal cortex, SMA: Supplementary motor area; IFG: In-
ferior frontal gyrus; Inferior parietal lobule (ILP)

I: theoretical model of working

memory Bullmore et al (2000)

II: Best graph found by Bullmore

et al. (2000)

III: Best possible search based on

exhaustive search and AIC

IV: Best possible search based on

exhaustive search and P value *

reciprocal direction fitted as a sin-

gle degree of freedom, after ex-

amining best graphs that are con-

tained edges in both directions

Oddball Tasks 5 (59049) Nodes

GLM was used to identify typical areas in a visual oddball
task; subjects were fixated and asked to push a button on each
trial when they saw an oddball (see left figure) and covari-
ances were fit with all possible graphs-the best AIC on the
right.

Event Perception 4 (728) and
6 (143448907) Nodes

i. ii.

iii.
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Examples of movies used in task (i) schema-poor and (ii)
schema-rich. Thresholded brain activity of events change
points vs background (iii) and cluster analysis of brain ac-
tivity (iv) for each subject; four common areas are found over
all (8) subject for all cluster analyses.

Left Panel: House stimulus Graph resulting from search-
ing 728 possible graphs with highest probability and lowest
AIC. Note ROIs associated with ”alerting attentional” func-
tions working memory and spatial, sequential ordering. Note
similarity to Oddball graph.
Right Panel: The study stimulus graph. Note increased com-
plexity of graph/nodes and overlap of areas. This is based on
14.3M graphs; ≈ 2days on the OPTERON cluster.

What do you do when it takes
43 Centuries?
Methods of Search when N≥7: MCMC

Search in large graph spaces have been explored in the NIPS
(Neural Information Processing) Community for more than
10 years; MCMC was one of those search methods. The
purpose of MCMC is to find a mean graph model defined
as Ḡ = ∑G p(G|D)G. Such model averaging is known (Lee,
1999) to produce more reliable and stable results comparing
to the single chosen best model. This graph G is defined by
a set of edges whenever Gi j = 1, thus Ḡ represents the prob-
ability of edge i j being present in the graph. For the graph
averaging we use posterior probability p(G|D) as defined in
(Burnham & Anderson, 2002). Such definition uses Akaike
Information Criterion (AIC) in order to define pdf

p(G|D) ≈
e−1/2∆AIC(G,D)

∑G e−1/2∆AIC(G,D)
,

where ∆AIC(G,D) is the difference between AIC(G,D) and
minimal AIC for any graph G given our data D.
Such pdf is based on an exponential prior on the complexity
of graphs:

log p(G|D)≈−1/2∆AIC(G,D)−const =−χ2−|G|+const

MCMC sampling stops once a stable solution is found. In
order to decide whether the solution is stable we run mul-
tiple MCMCs in parallel and stop whenever their solutions
are similar, i.e. maximal standard deviation from estimated
mean for each parameter across all MCMC runs doesn’t ex-
ceed 0.04 which gives 95% confidence that none of the pa-
rameters estimation errors exceeds 0.08.
To test the algorithm we used covariance data from the pre-
vious cases (4,5,6 nodes) and one simulated 7 node (≈10
Billion graphs) in which the covariance and graph were con-
structed. The algorithm estimated mean/average graph which
describes a probability of any edge being present in the orig-
inal structure. Further thresholding of such probability ma-
trix lead to the most probable graph structure in all cases. As
shown in the figure on the right accurate graph estimates were
made with only super-linear graph samples.
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Pseudocode of MCMC Algorithm on

the left made possible to get accurate

graph estimates with only super linear

graph sample
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